F. Ferraglia
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Ferraglia.
Archives of Virology | 2008
Maria Cristina Arcangeletti; F. De Conto; F. Ferraglia; F. Pinardi; Rita Gatti; Guido Orlandini; Silvia Covan; Federica Motta; Isabella Rodighiero; Giuseppe Dettori; Carlo Chezzi
This study was aimed at investigating the possible involvement of the actin cytoskeleton in the modulation of host permissiveness to A/NWS/33 human influenza virus infection in two mammalian (MDCK and LLC-MK2) cell lines in vitro. During the early stages of infection, no appreciable association between incoming NWS/33 virions and cortical actin was detectable in the permissive MDCK model by confocal microscopy, while extensive colocalization and a slower infection progression were observed in LLC-MK2 cells. In the latter model, we also demonstrated the inability of the virus to carry out multiple replication cycles, irrespective of the presence of cleaved HA subunits in the released virions. Treatment with the actin-depolymerizing agent cytochalasin D significantly increased the infection efficiency in LLC-MK2 cells, while a detrimental effect was observed in the MDCK cell line. Our data suggest a selective role of the actin network in inducing a restriction to influenza virus replication, mostly depending on its molecular organization, the host cell type and virus replication phase.
Journal of Cellular Biochemistry | 2003
Maria Cristina Arcangeletti; F. De Conto; F. Ferraglia; F. Pinardi; Rita Gatti; Guido Orlandini; Adriana Calderaro; Federica Motta; M.C. Medici; Monica Martinelli; P. Valcavi; Sergey V. Razin; Carlo Chezzi; Giuseppe Dettori
The cellular distribution of the human cytomegalovirus (HCMV)‐specific UL83 phosphoprotein (pp65) and UL123 immediate‐early protein (IEp72) in lytically infected human embryo fibroblasts was studied by means of indirect immunofluorescence and confocal microscopy. Both proteins were found to have a nuclear localization, but they were concentrated in different compartments within the nuclei. The pp65 was located predominantly in the nucleoli; this was already evident with the parental viral protein, which was targeted to the above nuclear compartment very soon after infection. The nucleolar localization of pp65 was also observed at later stages of the HCMV infectious cycle. After chromatin extraction (in the so‐called in situ nuclear matrices), a significant portion of the pp65 remained associated with nucleoli within the first hour after infection, then gradually redistributed in a perinucleolar area, as well as throughout the nucleus, with a granular pattern. A quite different distribution was observed for IEp72 at very early stages after infection of human embryo fibroblasts with HCMV; indeed, this viral protein was found in bright foci, clearly observable in both non‐extracted nuclei and in nuclear matrices. At later stages of infection, IEp72 became almost homogeneously distributed within the whole nucleus, while the foci increased in size and were more evenly spread; in several infected cells some of them lay within nucleoli. This peculiar nuclear distribution of IEp72 was preserved in nuclear matrices as well. The entire set of data is discussed in terms of the necessity of integration for HCMV‐specific products into the pre‐existing nuclear architecture, with the possibility of subsequent adaptation of nuclear compartments to fit the needs of the HCMV replicative cycle.
Journal of Cellular Biochemistry | 2009
M.C. Arcangeletti; Isabella Rodighiero; Flora De Conto; Rita Gatti; Guido Orlandini; F. Ferraglia; Federica Motta; Silvia Covan; Sergey V. Razin; Giuseppe Dettori; Carlo Chezzi
The nucleolus is a nuclear domain involved in the biogenesis of ribosomes, as well as in many other important cellular regulatory activities, such as cell cycle control and mRNA processing. Many viruses, including herpesviruses, are known to exploit the nucleolar compartment during their replication cycle. In a previous study, we demonstrated the preferential targeting and accumulation of the human cytomegalovirus (HCMV) UL83 phosphoprotein (pp65) to the nucleolar compartment and, in particular, to the nucleolar matrix of lytically infected fibroblasts; such targeting was already evident at very early times after infection. Here we have investigated the possible effects of rRNA synthesis inhibition upon the development of HCMV lytic infection, by using either actinomycin D or cisplatin at low concentrations, that are known to selectively inhibit RNA polymerase I activity, whilst leaving RNA polymerase II function unaffected. Following the inhibition of rRNA synthesis by either of the agents used, we observed a significant redistribution of nucleolar proteins within the nucleoplasm and a simultaneous depletion of viral pp65 from the nucleolus; this effect was highly evident in both unextracted cells and in nuclear matrices in situ. Of particular interest, even a brief suppression of rRNA synthesis resulted in a very strong inhibition of the progression of HCMV infection, as was concluded from the absence of accumulation of HCMV major immediate‐early proteins within the nucleus of infected cells. These data suggest that a functional relationship might exist between rRNA synthesis, pp65 localization to the nucleolar matrix and the normal development of HCMV lytic infection. J. Cell. Biochem. 108: 415–423, 2009.
Journal of Virological Methods | 2013
Maria Cristina Medici; Fabio Tummolo; Valeria Albonetti; F. Pinardi; F. Ferraglia; Carlo Chezzi; Maria Cristina Arcangeletti; Flora De Conto; Adriana Calderaro
A novel molecular assay, TRCRtest NV-W, based on a transcription-reverse transcription concerted reaction (TRC) for isothermal amplification and real-time detection of norovirus in stools was assessed and compared with an RT-nPCR. Archived stools positive for either different types or variants of norovirus genogroups I and II or other enteric viruses were used to assess the sensitivity and specificity of the novel assay. The TRC assay was 100% specific since it detected all the noroviruses tested and it did not display cross reactivity with other enteric viruses. When screening a collection of 387 stools with the TRC and RT-nPCR assays, the TRC displayed concordance, sensitivity, specificity, positive and negative predictive values of 96.6%, 81%, 99.7%, 98.1%, and 96.3%, respectively, after retesting the negative specimens. Additional PCRs and/or sequencing, used to understand inconsistent results between TRC and RT-nPCR, confirmed all positive results and did not reveal nucleotide variations in the TRC probe and primers binding sites. The TRC assay may be a rapid and ease of use tool for the detection of noroviruses in clinical virology laboratories even in the face of rapidly evolving noroviruses.
International Journal of Medical Microbiology | 2018
Adriana Calderaro; Monica Martinelli; Mirko Buttrini; Sara Montecchini; Silvia Covan; Sabina Rossi; F. Ferraglia; Paolo Montagna; F. Pinardi; Sandra Larini; Maria Cristina Arcangeletti; Maria Cristina Medici; Carlo Chezzi; Flora De Conto
This study represents a 2-year picture of the epidemiology of enteric pathogens in children suffering from gastroenteritis using the FilmArray® Gastrointestinal Panel (FA-GP), a multiplex molecular assay that allows to simultaneously detect a large panel of pathogens independently of the etiological suspicion and to evaluate its potential contribution to the diagnosis compared to the conventional methods. A total of 1716 stool samples, collected from children with clinical suspicion of bacterial and/or viral gastroenteritis attending the University Hospital of Parma, was submitted to the FA-GP and, when an adequate aliquot was available, to electron microscopy (n = 1163) for virus detection and to an enterovirus-targeting real-time PCR (n = 1703). Specimens with positive results for Salmonella, Yersinia enterocolitica, Vibrio, diarrheagenic Escherichia coli/Shigella, Campylobacter, Plesiomonas shigelloides and/or parasites by the FA-GP were also submitted to conventional diagnostic methods. The FA-GP gave positive results in 958 (55.8%) cases, 64.8% from inpatients: 647 (67.5%) contained a single agent and 311 (32.5%) multiple agents, for a total of 1374 pathogens. Enteropathogenic E. coli, rotavirus, norovirus, toxigenic Clostridioides difficile, and sapovirus were the most commonly detected pathogens. A total of 812 additional agents (344 of which as single pathogen) was detected by the FA-GP and not included in the clinical suspicion. The overall recovery rate of the conventional methods from stools that resulted positive by the FA-GP was 38.6% for bacteria, 50% and 84.2% for Giardia intestinalis and Cryptosporidium, respectively, and ranged from 3.7% to 64.6% for viruses, if excluding all electron microscopy-negative astroviruses. Enterovirus, an agent not targeted by the FA-GP, was revealed in 9.6% (164/1703) of the examined samples, and in 52 cases it was the only agent detected. The results of this study allowed to extend the range of detectable pathogens independently of the clinical suspicion, to detect co-infections in almost one third of children positive for at least one agent and to show that conventional methods would have missed more than half of the enteric agents detected by the FA-GP.
Journal of Clinical Virology | 2016
Maria Cristina Medici; Carlo Chezzi; Flora De Conto; F. Ferraglia; F. Pinardi; Maria Cristina Arcangeletti; Daniela Bernasconi; Claudio Galli; Adriana Calderaro
Archives of Virology | 2016
F. De Conto; M.C. Medici; F. Ferraglia; F. Pinardi; Alessandra Fazzi; Maria Cristina Arcangeletti; Carlo Chezzi; Adriana Calderaro
Archive | 2018
Maria Cristina Medici; Fabio Tummolo; Vito Martella; Flora De Conto; Maria Cristina Arcangeletti; F. Pinardi; F. Ferraglia; Carlo Chezzi; Adriana Calderaro
Microbiologia Medica | 2004
M.C. Arcangeletti; F. De Conto; F. Pinardi; M.C. Medici; P. Valcavi; F. Casula; F. Ferraglia; Federica Motta; Silvia Covan; Adriana Calderaro; Carlo Chezzi; Giuseppe Dettori
Microbiologia Medica | 2004
Maria Cristina Arcangeletti; F. De Conto; F. Pinardi; M.C. Medici; P. Valcavi; F. Casula; F. Ferraglia; Federica Motta; Silvia Covan; Adriana Calderaro; Carlo Chezzi; Giuseppe Dettori