F. Goetz-Neunhoeffer
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Goetz-Neunhoeffer.
Acta Biomaterialia | 2010
S. Kannan; F. Goetz-Neunhoeffer; J. Neubauer; S. Pina; P.M.C. Torres; J.M.F. Ferreira
The synthesis of five different Sr(2+)- and Mg(2+)-co-substituted beta-tricalcium phosphate (beta-TCP) has been obtained by heating the calcium-deficient apatites above 800 degrees C. With the investigated concentrations of Sr(2+) and Mg(2+) from the present study, no additional phases other than beta-TCP have been detected. The synthesized powders have been characterized by X-ray diffraction, Fourier transform infrared spectrometry, elemental analysis and Rietveld refinement studies. The co-substitution of Sr(2+) and Mg(2+) in the beta-TCP has resulted in the formation of crystalline beta-TCP at hexagonal setting (space group R3c). The reduction of lattice a- and c-axis parameters with the combined substitution of Sr(2+) and Mg(2+) in the beta-TCP has been found evident from the present results. Sr(2+) has been found occupying the Ca(1,2,3,4) sites and Mg(2+) was found at the sixfold coordinated Ca(5) site of beta-TCP structure.
Acta Biomaterialia | 2010
S. Pina; Paula M.C. Torres; F. Goetz-Neunhoeffer; J. Neubauer; J.M.F. Ferreira
New bone cements made of Sr-substituted brushite-forming alpha-tricalcium phosphate (alpha-TCP) were prepared and characterized in the present work. The quantitative phase analysis and structural refinement of the starting powders and of hardened cements were performed by X-ray powder diffraction and the Rietveld refinement technique. Isothermal calorimetry along with setting time analysis allowed a precise tracing of the setting process of the pastes. The pastes showed exothermic reactions within the first 10-15 min after mixing and further release of heat after about 1h. An apatitic phase formed upon immersion of the hardened cements in simulated body fluid for 15 and 30 days due to the conversion of brushite into apatite confirming their in vitro mineralization capability. The compressive strength of the wet cement specimens decreased with increasing curing time, being higher in the case of Sr-substituted CPC. The results suggest that the newly developed Sr-substituted brushite-forming alpha-TCP cements show promise for uses in orthopaedic and trauma surgery such as in filling bone defects.
Powder Diffraction | 2006
F. Goetz-Neunhoeffer; Juergen Neubauer
A revised structure model of ettringite is presented, in order to provide quantitative X-ray diffraction (QXRD) of this mineral in cement pastes. The model is derived from two different existing structure models, both of which are suitable for restricted use but are inferior to the refined ettringite structure presented. In the first published ettringite structure proposed by Moore and Taylor [Acta Crystallogr. B 26, 386–393 (1970)], none of the 128 positions for H are given in the unit cell, which results in reduced scattering power for use of this model for quantification purposes. For the precise quantification of ettringite in samples together with anhydrous phases, the scattering factors of all atoms including the H positions are indispensable. The revised structure model is based on the data of Moore and Taylor, supplemented by the H positions determined by Berliner (Material Science of Concrete Special Volume, The Sydney Diamond Symposium, American Ceramic, Society, 1998, pp. 127–141) on the basis of a neutron diffraction structural investigation of deuterated ettringite at 20 K. Berliner’s (Material Science of Concrete Special Volume, The Sydney Diamond Symposium, American Ceramic Society, 1998, pp. 127–141) thermal parameter should not, however, be used, since a normal application is at room temperature. In order further to improve the structure model of ettringite, Rietveld refinement with the rigid body approach for OH and H 2 O molecules and SO 4 tetrahedra was employed. The refined and improved ettringite structure model was tested for quantitative phase analysis by the determination of actual ettringite contents in mixtures with an internal standard. Synthesized and orientation-free prepared ettringite powders were investigated by X-ray powder diffraction analysis and quantified in four different blends with zircon. The quantification results with the new structure model demonstrate the superior quality of the revised ettringite structure.
Acta Biomaterialia | 2014
Katrin Hurle; Juergen Neubauer; Marc Bohner; Nicola Doebelin; F. Goetz-Neunhoeffer
Powders of α-tricalcium phosphate (α-TCP), which readily react with water to form calcium-deficient hydroxyapatite (CDHA), are frequently used in bone cements. As, for clinical applications, it is important to adjust the setting reaction of the cements to a reasonable reaction time, exact knowledge of the hydration mechanism is essential. It is known that prolonged milling results in partial amorphization of α-TCP powders and that dissolution of the amorphous phase significantly accelerates the hydration, but it is not clear yet when the amorphous phase reacts in comparison to the crystalline α-TCP. Therefore the aim of this study was to investigate the development of quantitative phase content of α-TCP samples during hydration. For this purpose, three α-TCP powders, containing 0, 16 and 71wt.% of amorphous phase (ATCP), were mixed with either deionized water or a 0.1M Na2HPO4 aqueous solution. The crystalline evolution of the paste was assessed quantitatively during the first 48h of hydration at 23°C by G-factor quantification. The present investigations demonstrate that ATCP reacted earlier than crystalline α-TCP. The results also suggest the formation of an X-ray amorphous phase during the hydraulic conversion formation of α-TCP into CDHA.
Powder Diffraction | 2008
C. Hesse; F. Goetz-Neunhoeffer; J. Neubauer; M. Braeu; P. Gaeberlein
Investigation into the early hydration of Portland cement was performed by in-situ X-ray diffraction (XRD). Technical white cement was used for the XRD analysis on a D5000 diffractometer (Siemens). All diffraction patterns of the in-situ measurement which were recorded up to 22 hours of hydration at defined temperatures were analyzed by Rietveld refinement. The resulting phase composition was transformed with respect to free water and C-SH leading to the total composition of the cement paste. The hydration reactions can be observed by dissolution of clinker phases as well as by the formation of the hydrate phases ettringite and portlandite. With increasing temperatures the reactions proceed faster. The formation of ettringite is directly influenced by the rate of dissolution of anhydrite and tricalcium aluminate (C 3A). The beginning of the main period of hydration is marked by the start of portlandite formation. The experiments point out that a quantitative phase analysis of the cement hydration is feasible with standard lab diffractometers.
American Mineralogist | 2011
Jürgen Titschack; F. Goetz-Neunhoeffer; Jürgen Neubauer
Abstract Mg-calcites commonly occur in natural environments, with Mg-contents ranging between about 0 and 32 mol% (referring to MgCO3). Often, different Mg-calcite phases occur within the same sample. The Mg-content in calcites permits the classification of the diagenetic environment (marine vs. meteoric), or the reconstruction of paleotemperatures from skeletal remains. Since the 1960s, there have been published various calibrations for Mg determination in calcites based on XRD measurements. Recently, this method has come to be superseded by wet chemical, laser ablation, and microprobe analysis, due to their higher accuracy and/or higher sample resolution of these latter methods. This study presents a new calibration for the Mg determination in calcites using XRD measurements analyzed by means of the Rietveld refinement method. The calibration is based on lattice parameters and exhibits a reliable Mg-determination accuracy of more than 0.8 mol% between 0 and 15.5 mol%. The incorporation of the calibration into the Rietveld refinement software TOPAS permits a fast, standardized workflow. This, in turn, enhances the user-friendliness and the reproducibility of results, as well as allows the simultaneous analysis of multiple Mg-calcites in a sample. Mixtures of two Mg-calcites were analyzed using this new method. The Mg-content of two co-occurring Mg-calcite phases can be reliably quantified providing the Mg-calcites differ by at least 4.9 mol% and the minor Mg-calcite phase makes up more than 2.7 wt%. If the Mg-calcite phases differ by 3.4 mol% or less, the reliable identification of different Mg-calcite phases is questionable, due to the fact that differences involved here are too small. If such XRD patterns are refined with only one Mg-calcite phase, then the systematic misfit between measured and refined pattern can be used for the identification of a second Mg-calcite phase down to a difference in the Mg-content of about 3 mol%. However, a reliable phase quantification for these patterns cannot be achieved.
Journal of Biomedical Materials Research Part B | 2010
S. Pina; Sandra I. Vieira; Paula M.C. Torres; F. Goetz-Neunhoeffer; J. Neubauer; O. A. B. da Cruz e Silva; E. F. da Cruz e Silva; J.M.F. Ferreira
The present study investigated the in vitro performance of brushite-forming Zn- and ZnSr-substituted beta-TCP bone cements in terms of wet mechanical strength and biological response. Quantitative phase analysis and structural refinement of the powdered samples were performed by X-ray powder diffraction and Rietveld refinement technique. Initial and final setting times of the cement pastes, measured using Gilmore needles technique, showed that ZnSrCPC sets faster than ZnCPC. The measured values of the wet strength after 48 h of immersion in PBS solution at 37 degrees C showed that ZnSrCPC cements are stronger than ZnCPC cements. Human osteosarcoma-derived MG63 cell line proved the nontoxicity of the cement powders, using the resazurin metabolic assay.
Journal of Biomedical Materials Research Part B | 2008
S. Kannan; F. Goetz-Neunhoeffer; J. Neubauer; Avito Rebelo; Patricia Valério; J.M.F. Ferreira
The structure of two different Mg-substituted biphasic (HAP and beta-TCP) mixtures along with the biphasic mixtures without substituted Mg(2+) was investigated using Rietveld refinement technique. The substituted Mg(2+) was found in the beta-TCP phase and its influence on the composition has led to an increase in HAP content of Mg-containing biphasic mixtures when compared with the HAP content detected in pure biphasic mixtures. The refined structural parameters of Ca(10)(PO(4))(6)(OH)(2) and beta-Ca(3)(PO(4))(2) confirmed that all the investigated compositions have crystallized in the corresponding hexagonal (space group P6(3)/m) and rhombohedral (space group R3c) structures. The substitution of lower sized magnesium was found preferentially incorporated at the sixfold-coordinated Ca (5) site of beta-TCP, which is due to the strong Ca (5).O interaction among all the five different Ca sites of beta-Ca(3)(PO(4))(2). The in vitro tests using primary culture of osteoblasts showed that all the tested samples are biocompatible and promising materials for in vivo studies.
Journal of Applied Crystallography | 2015
D. Ectors; F. Goetz-Neunhoeffer; J. Neubauer
This article reports the derivation of a physically based geometric description of the mean diameter of orthogonal shapes and provides an efficient formalism to relate these to reciprocal lattices and corresponding apparent crystallite sizes. The following descriptions provide a reasonable approximation for the simulation and refinement of anisotropic domain morphology in powder diffraction techniques.
Acta Biomaterialia | 2015
Katrin Hurle; Juergen Neubauer; Marc Bohner; Nicola Doebelin; F. Goetz-Neunhoeffer
One α-tricalcium phosphate (α-TCP) powder was either calcined at 500°C to obtain fully crystalline α-TCP or milled for different durations to obtain α-TCP powders containing various amounts of X-ray amorphous tricalcium phosphate (ATCP). These powders containing between 0 and 71wt.% ATCP and up to 2.0±0.1wt.% β-TCP as minor phase were then hydrated in 0.1M Na2HPO4 aqueous solution and the resulting heat flows were measured by isothermal calorimetry. Additionally, the evolution of the phase composition during hydration was determined by in situ XRD combined with the G-factor method, an external standard method which facilitates the indirect quantification of amorphous phases. Maximum ATCP hydration was reached after about 1h, while that of crystalline α-TCP hydration occurred between 4 and 11h, depending on the ATCP content. An enthalpy of formation of -4065±6kJ/mol (T=23°C) was calculated for ATCP (Ca3(PO4)2), while for crystalline α-TCP (α-Ca3(PO4)2) a value of -4113±6kJ/mol (T=23°C) was determined.