Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Gonzalez-Lima is active.

Publication


Featured researches published by F. Gonzalez-Lima.


The Journal of Neuroscience | 2001

Energy Hypometabolism in Posterior Cingulate Cortex of Alzheimer's Patients: Superficial Laminar Cytochrome Oxidase Associated with Disease Duration

J. Valla; Jason D. Berndt; F. Gonzalez-Lima

Among brain regions affected in Alzheimers disease (AD), the posterior cingulate shows the earliest and largest decrement in energy metabolism. Positron emission tomography (PET) studies have shown that these decrements appear before the onset of memory deficits or other symptoms in persons at genetic risk for AD. This study compares in vivo imaging results and in situ postmortem analyses by examining the posterior cingulate (area 23) in 15 AD patients and 13 age-matched nondemented controls using quantitative cytochrome oxidase histochemistry as an intracellular measure of oxidative energy metabolic capacity. Each of the six layers of the posterior cingulate demonstrated a decline in cytochrome oxidase activity in AD relative to controls, whereas adjacent motor cortex showed no significant differences. This decrement did not appear to be mainly secondary to nonspecific decrement in mitochondrial enzymes, oxidative stress, cell loss, or histopathology. The cytochrome oxidase decrement was most severe in the superficial layer I (−39%), which demonstrated a correlation to disease duration. Covariance analyses suggest that superficial laminas undergo a functional uncoupling from the deeper layers of posterior cingulate cortex in AD, whereas no such effects are found in motor cortex or controls. These findings expand on previous results from PET studies by illuminating the layer-specific cytochrome oxidase contributions to energy hypometabolism. The findings suggest a decrement of cytochrome oxidase in posterior cingulate cortex, with progressive reduction within the superficial laminas linked to disease duration. Such decrement could contribute to some of the behavioral symptoms displayed by AD patients. This decrement appeared greater in women.


Brain Research | 2003

Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior

Jason Shumake; Emmeline Edwards; F. Gonzalez-Lima

Congenitally helpless rats have been selectively bred to display an immediate helpless response to stress in order to model hereditary brain differences that contribute to depression vulnerability. Differences in regional brain metabolism between congenitally helpless and non-helpless rats were investigated using quantitative cytochrome oxidase histochemistry. The results indicated that congenitally helpless rats had 64-71% elevated metabolism in the habenula and a 25% elevation in the related interpeduncular nucleus. In contrast, helpless rats had 28% reduced metabolism in the ventral tegmental area (VTA) and 14-16% reductions in the basal ganglia and basolateral and central amygdala. The opposite metabolic changes in the habenula and ventral tegmental area may be especially important for determining the congenitally helpless rats global pattern of brain activity, which resembles the metabolic activity pattern produced by dopamine antagonism.


Neuroscience | 1994

Cytochrome oxidase activity in the auditory system of the mouse: A qualitative and quantitative histochemical study

F. Gonzalez-Lima; A. Cada

Detailed qualitative and quantitative determinations of cytochrome oxidase activity in the central auditory system of BALB/cJ mice were obtained at the light microscopic level. Cytochrome oxidase activity was determined using quantitative densitometry calibrated with standards of spectrophotometrically assayed enzymatic activity. This was done together with a cobalt-intensified histochemical procedure using fresh-frozen brains without perfusion-fixation. The resulting method showed improved sensitivity and allowed quantification of histochemical labeling as actual enzyme activity units. Adjacent sections were processed for either Nissl, fiber or Golgi stains to correlate the histochemical labeling with tissue morphology. The more peripheral auditory nuclei showed primarily somatic labeling with specific cell types showing predominant reactivity. However, higher auditory structures, including the inferior colliculus, medial geniculate and auditory cortex, showed predominantly neuropil reactivity. Comparison of mean cytochrome oxidase activities for the 27 auditory regions quantified revealed a trend for decreasing activity from the brainstem to the forebrain in central lemniscal structures. The extra-lemniscal auditory regions at each level showed lower activity than the corresponding lemniscal regions. The regions with the higher activity values showed around 10 times the labeling density of the white matter, indicating the high sensitivity of the method. The darkly labeling auditory structures were clearly delineated from surrounding neural regions, supporting the concept that basal levels of oxidative metabolic capacity are larger for the auditory system. It was concluded that the quantitative approach to cytochrome oxidase histochemistry may be applied successfully to the mouse brain. The normative data presented may be used as a starting point for other investigations of the effects of experimental manipulations on the metabolic activity of the auditory system.


Neuroreport | 2005

Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition

Mendell Rimer; Douglas W. Barrett; Monica A. Maldonado; Vita M. Vock; F. Gonzalez-Lima

Genetic and behavioral studies in humans and mouse mutants have implicated the gene encoding neuregulin-1 (Nrg-1) as a candidate susceptibility gene for schizophrenia. We examined the behavior of mice heterozygous for a mutation in neuregulin-1s immunoglobulin (Ig)-like domain (Ig-nrg-1+/− mice). We found that these animals displayed behaviors related to a schizophrenia-like phenotype, such as clozapine suppression of open-field and running wheel activity and impaired latent inhibition. Contrary to findings with other nrg-1 mutants, Ig-nrg-1+/− mice did not exhibit significantly elevated locomotion relative to littermate controls. These results suggest that Ig-Nrg-1s contribute to some – but not all – aspects of the schizophrenia-like phenotype of nrg-1 mutants, and further support nrg-1 as a candidate gene for schizophrenia.


Behavioral and Cognitive Neuroscience Reviews | 2003

Brain Systems Underlying Susceptibility to Helplessness and Depression

Jason Shumake; F. Gonzalez-Lima

There has been a relative lack of research into the neurobiological predispositions that confer vulnerability to depression. This article reviews functional brain mappings from a genetic animal model, the congenitally helpless rat, which is predisposed to develop learned helplessness. Neurometabolic findings from this model are integrated with the neuroscientific literature from other animal models of depression as well as depressed humans. Changes in four major brain systems are suggested to underlie susceptibility to helplessness and possibly depression: (a) an unbalanced prefrontal-cingulate cortical system, (b) a dissociated hypothalamic-pituitary-adrenal axis, (c) a dissociated septal-hippocampal system, and (d) a hypoactive brain reward system, as exemplified by a hypermetabolic habenula-interpeduncular nucleus pathway and a hypometabolic ventral tegmental area-striatum pathway. Functional interconnections and causal relationships among these systems are considered and further experiments are suggested, with theoretical attention to how an abnormality in any one system could affect the others.


Pharmacology, Biochemistry and Behavior | 2004

Methylene blue improves brain oxidative metabolism and memory retention in rats.

Narriman Lee Callaway; Penny D. Riha; Aleksandra K. Bruchey; Zeenat Munshi; F. Gonzalez-Lima

Methylene blue (MB) increases mitochondrial oxygen consumption and restores memory retention in rats metabolically impaired by inhibition of cytochrome c oxidase. This study tested two related hypotheses using biochemical and behavioral techniques: (1) that low-level MB would enhance brain cytochrome c oxidation, as tested in vitro in brain homogenates and after in vivo administration to rats and (2) that corresponding low-dose MB would enhance spatial memory retention in normal rats, as tested 24 h after rats were trained in a baited holeboard maze for 5 days with daily MB posttraining injections. The biochemical in vitro studies showed an increased rate of brain cytochrome c oxidation with the low but not the high MB concentrations tested. The in vivo administration studies showed that the corresponding MB low dose (1 mg/kg) increased brain cytochrome c oxidation 24 h after intraperitoneal injection, but not after 1 or 2 h postinjection. In the behavioral studies, spatial memory retention in probe trials (percentage of visits to training-baited holes compared to total visits) was significantly better for MB-treated than saline control groups (66% vs. 31%). Together the findings suggest that low-dose MB enhances spatial memory retention in normal rats by increasing brain cytochrome c oxidase activity.


Neuroscience | 2013

Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans

Douglas W. Barrett; F. Gonzalez-Lima

This is the first controlled study demonstrating the beneficial effects of transcranial laser stimulation on cognitive and emotional functions in humans. Photobiomodulation with red to near-infrared light is a novel intervention shown to regulate neuronal function in cell cultures, animal models, and clinical conditions. Light that intersects with the absorption spectrum of cytochrome oxidase was applied to the forehead of healthy volunteers using the laser diode CG-5000, which maximizes tissue penetration and has been used in humans for other indications. We tested whether low-level laser stimulation produces beneficial effects on frontal cortex measures of attention, memory and mood. Reaction time in a sustained-attention psychomotor vigilance task (PVT) was significantly improved in the treated (n=20) vs. placebo control (n=20) groups, especially in high novelty-seeking subjects. Performance in a delayed match-to-sample (DMS) memory task showed also a significant improvement in treated vs. control groups as measured by memory retrieval latency and number of correct trials. The Positive and Negative Affect Schedule (PANAS-X), which tracks self-reported positive and negative affective (emotional) states over time, was administered immediately before treatment and 2 weeks after treatment. The PANAS showed that while participants generally reported more positive affective states than negative, overall affect improved significantly in the treated group due to more sustained positive emotional states as compared to the placebo control group. These data imply that transcranial laser stimulation could be used as a non-invasive and efficacious approach to increase brain functions such as those related to cognitive and emotional dimensions. Transcranial infrared laser stimulation has also been proven to be safe and successful at improving neurological outcome in humans in controlled clinical trials of stroke. This innovative approach could lead to the development of non-invasive, performance-enhancing interventions in healthy humans and in those in need of neuropsychological rehabilitation.


Progress in Neurobiology | 2012

Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

Julio C. Rojas; Aleksandra K. Bruchey; F. Gonzalez-Lima

This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blues action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment.


Neurotoxicity Research | 2006

Methylene Blue Prevents Neurodegeneration Caused by Rotenone in the Retina

Xian Zhang; Julio C. Rojas; F. Gonzalez-Lima

An experimental optic neuropathy model was used to test the hypothesis that methylene blue may protect the retinal ganglion cell layer from neurodegeneration caused by rotenone. Rotenone is a widely used pesticide that inhibits complex I, the first enzyme of the mitochondrial respiratory chain. Complex I dysfunction is linked to the degeneration of retinal ganglion cells in Leber’s optic neuropathy. Methylene blue is a reduction-oxidation agent that can act as a powerful antioxidant and also as an enhancer of the electron transport chain, preventing formation of mitochondrial oxygen free radicals and promoting oxygen consumption. The neurodegeneration of the retina was studied in mice with intravitreal microinjection of rotenone alone, or in combination with increasing doses of methylene blue, in one eye, and the vehicle in the contralateral control eye. The effect of rotenone and rotenone plus methylene blue was investigated using two histological stains, complex I and Nissl, and two measurements, morphometric layer thickness and non-biased stereological cell counts. Rotenone induced neurodegeneration in the retinal ganglion cell layer 24 h after injection, as indicated by significant reductions in both the thickness and cell numbers of the retinal ganglion cell layer of eyes microinjected with rotenone as compared to the control eyes. This neurodegeneration was prevented in a dose dependent manner by the injection of methylene blue along with rotenone. It was concluded that rotenone-induced degeneration in the ganglion cell layer can be prevented by intravitreal injection of methylene blue.In vitro experiments showed that methylene blue is both a powerful antioxidant as well as an enhancer of cellular oxygen consumption and is able to reverse the oxidative stress and decrease in oxygen consumption induced by rotenone in brain homogenates. The findings suggest that methylene blue may be a promising neuroprotective agent in optic neuropathy and perhaps other neurodegenerative diseases caused by mitochondrial dysfunction.


Neuropsychopharmacology | 2006

Chronic administration of 13-cis-retinoic acid increases depression-related behavior in mice

Kally C. O'Reilly; Jason Shumake; F. Gonzalez-Lima; Michelle A. Lane; Sarah J. Bailey

Retinoid signaling plays a well-established role in neuronal differentiation, neurite outgrowth, and the patterning of the anteroposterior axis of the developing neural tube. However, there is increasing evidence that nutritional vitamin A status and retinoid signaling play an important role in the function of the adult brain. 13-Cis-retinoic acid (13-cis-RA) (isotretinoin or Accutane), a synthetic retinoid that is an effective oral treatment for severe nodular acne, has been linked with depression and suicide in patients. The purpose of this study was to test the hypothesis that chronic administration of 13-cis-RA would lead to depression-related behaviors in mice. Young, adult male mice received 13-cis-RA (1 mg/kg) by daily intraperitoneal injection for 6 weeks. This treatment paradigm produced plasma levels of 13-cis-RA that are comparable to those reported in human patients taking Accutane. In both the forced swim test and the tail suspension test, we found that 13-cis-RA-treated mice spent significantly more time immobile compared to vehicle-treated controls. In the open field test, there was no change in anxiety-related behavior in 13-cis-RA-treated mice. Furthermore, chronic administration of 13-cis-RA did not impair locomotion in either the open field or the rotarod test. Taken together, these results suggest that administration of 13-cis-RA increases depression-related behaviors in mice.

Collaboration


Dive into the F. Gonzalez-Lima's collaboration.

Top Co-Authors

Avatar

Jason Shumake

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Douglas W. Barrett

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Julio C. Rojas

University of California

View shared research outputs
Top Co-Authors

Avatar

Dirk Jones

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jason D. Berndt

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Aleksandra K. Bruchey

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Penny D. Riha

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hemanth P. Nair

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eimeira Padilla

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge