F. Hardy
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Hardy.
Physical Review B | 2013
A. E. Böhmer; F. Hardy; F. Eilers; D. Ernst; P. Adelmann; P. Schweiss; Th. Wolf; C. Meingast
The coupling between superconductivity and orthorhombic distortion is studied in vapor-grown FeSe single crystals using high-resolution thermal-expansion measurements. In contrast to the Ba122-based (Ba122) superconductors, we find that superconductivity does not reduce the orthorhombicity below
Physical Review B | 2014
Taichi Terashima; Naoki Kikugawa; Andhika Kiswandhi; Eun Sang Choi; J. S. Brooks; S. Kasahara; Tatsuya Watashige; Hiroaki Ikeda; T. Shibauchi; Y. Matsuda; Thomas Wolf; A. E. Böhmer; F. Hardy; C. Meingast; H. v. Löhneysen; Michi-To Suzuki; Ryotaro Arita; Shinya Uji
{T}_{c}
Physical Review B | 2008
Jürgen Winterlik; Gerhard H. Fecher; Claudia Felser; Martin Jourdan; K. Grube; F. Hardy; H. v. Löhneysen; K. L. Holman; R. J. Cava
. Instead we find that superconductivity couples strongly to the in-plane area, which explains the large hydrostatic pressure effects. We discuss our results in light of the spin-nematic scenario and argue that FeSe has many features that are quite different from typical Fe-based superconductors.
Physical Review Letters | 2014
A. E. Böhmer; Philipp Burger; F. Hardy; Th. Wolf; P. Schweiss; Rainer Fromknecht; Marius Reinecker; W. Schranz; C. Meingast
We have observed Shubnikov-de Haas oscillations in FeSe. The Fermi surface deviates significantly from predictions of band-structure calculations and most likely consists of one electron and one hole thin cylinder. The carrier density is in the order of 0.01 carriers/ Fe, an order-of-magnitude smaller than predicted. Effective Fermi energies as small as 3.6 meV are estimated. These findings call for elaborate theoretical investigations incorporating both electronic correlations and orbital ordering.
Physical Review Letters | 2013
F. Hardy; A. E. Böhmer; Dai Aoki; Philipp Burger; Th. Wolf; P. Schweiss; Rolf Heid; P. Adelmann; Y. X. Yao; G. Kotliar; Jörg Schmalian; C. Meingast
This work reports on the novel Heusler superconductor ZrNi2Ga. Compared to other nickel-based superconductors with Heusler structure, ZrNi2Ga exhibits a relatively high superconducting transition temperature of Tc=2.9 K and an upper critical field of 1.5 T. Electronic structure calculations show that this relatively high transition temperature is caused by a van Hove singularity, which leads to an enhanced density of states at the Fermi energy. The van Hove singularity originates from a higher order valence instability at the L-point in the electronic structure. The enhanced density of states at the Fermi level was confirmed by specific heat and susceptibility measurements. Although many Heusler compounds are ferromagnetic, our measurements of ZrNi2Ga indicate a paramagnetic state above Tc and could not reveal any traces of magnetic order down to temperatures of at least 0.35 K. We investigated in detail the superconducting state with specific heat, magnetization, and resistivity measurements. The resulting data show the typical behavior of a conventional, weakly coupled BCS (s-wave) superconductor.
Physical Review B | 2010
F. Hardy; Th. Wolf; R. A. Fisher; Robert Eder; P. Schweiss; P. Adelmann; H. v. Löhneysen; C. Meingast
The nematic susceptibility, χφ, of hole-doped Ba(1-x)K(x)Fe2As2 and electron-doped Ba(Fe(1-x)Co(x))2As2 iron-based superconductors is obtained from measurements of the elastic shear modulus using a three-point bending setup in a capacitance dilatometer. Nematic fluctuations, although weakened by doping, extend over the whole superconducting dome in both systems, suggesting their close tie to superconductivity. Evidence for quantum critical behavior of χφ is, surprisingly, only found for Ba(Fe(1-x)Co(x))2As2 and not for Ba(1-x)K(x)Fe2As2--the system with the higher maximal Tc value.
Physical Review Letters | 2009
F. Hardy; P. Adelmann; Thomas Wolf; H. v. Löhneysen; C. Meingast
Using resistivity, heat-capacity, thermal-expansion, and susceptibility measurements we study the normal-state behavior of KFe2As2. Both the Sommerfeld coefficient (γ≈103 mJ mol(-1) K(-2)) and the Pauli susceptibility (χ≈4×10(-4)) are strongly enhanced, which confirm the existence of heavy quasiparticles inferred from previous de Haas-van Alphen and angle-resolved photoemission spectroscopy experiments. We discuss this large enhancement using a Gutzwiller slave-boson mean-field calculation, which shows the proximity of KFe2As2 to an orbital-selective Mott transition. The temperature dependence of the magnetic susceptibility and the thermal expansion provide strong experimental evidence for the existence of a coherence-incoherence crossover, similar to what is found in heavy fermion and ruthenate compounds, due to Hunds coupling between orbitals.
Nature Communications | 2015
A. E. Böhmer; F. Hardy; Liran Wang; Th. Wolf; P. Schweiss; C. Meingast
We report on the determination of the electronic heat capacity of a slightly overdoped (x = 0.075) Ba(Fe1-xCox)2As2 single crystal with a Tc of 21.4 K. Our analysis of the temperature dependence of the superconducting-state specific heat provides strong evidence for a two-band s-wave order parameter with gap amplitudes 2D1(0)/kBTc=1.9 and 2D2(0)/kBTc=4.4. Our result is consistent with the recently predicted s+- order parameter [I. I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008)].
Journal of the Physical Society of Japan | 2015
Taichi Terashima; Naoki Kikugawa; S. Kasahara; Tatsuya Watashige; T. Shibauchi; Y. Matsuda; Thomas Wolf; A. E. Böhmer; F. Hardy; C. Meingast; H. v. Löhneysen; Shinya Uji
Using high-resolution dilatometry, we study the thermodynamic response of the lattice parameters to superconducting order in a self-flux grown Ba(Fe0.92Co0.08)2As2 single crystal. The uniaxial-pressure dependencies of the critical temperature Tc calculated using our thermal-expansion and specific-heat data via the Ehrenfest relation, are found to be quite large and very anisotropic (dTc/dpa=3.1(1) K/GPa and dTc/dpc=-7.0(2) K/GPa). Our results show that there is a strong coupling of the c/a ratio to superconducting order, which demonstrates that Tc is far from the optimal value.
Physical Review Letters | 2015
Watson; Toshifumi Yamashita; S. Kasahara; W. Knafo; Marc Nardone; J. Béard; F. Hardy; A. McCollam; A. Narayanan; S.F. Blake; Th. Wolf; Amir A. Haghighirad; C. Meingast; Aj Schofield; H. von Löhneysen; Y. Matsuda; Amalia I. Coldea; T. Shibauchi
Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1−xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.