Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F.J. van Schooten is active.

Publication


Featured researches published by F.J. van Schooten.


The FASEB Journal | 1998

Putative susceptibility markers of coronary artery disease: association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue

F.J. van Schooten; Ari Hirvonen; Lou M. Maas; B. de Mol; J.C.S. Kleinjans; D. A. Bell; J. D. Durrer

Cancer and cardiovascular diseases share risk factors such as smoking, and the onset of both diseases have been suggested to have a common mechanistic basis. The binding of carcinogens to DNA (carcinogen‐DNA adducts), genetic polymorphisms in carcinogen‐detoxifying enzymes glutathione S‐transferases (GSTs), and genetic polymorphisms in the vitamin D receptor (VDR) are among the candidates for modifiers of cancer risk. We determined whether these biomarkers could be related to individual characteristics of patients suffering from cardiovascular diseases. For that purpose, DNA from the right atrial appendage of 41 patients who underwent open heart surgery was analyzed for smoking‐related DNA adducts and polymorphisms in GSTM1, GSTT1, and VDR genes. Statistical analysis was used to identify any patients characteristics associated with these molecular markers. Our results showed that heart tissue of cigarette smokers contained a variety of aromatic DNA adducts in significantly elevated levels compared to ex‐smokers (P<0.01) or nonsmokers (P<0.001). A linear relationship was observed between DNA adduct levels and daily cigarette smoking (rs=0.73; P=0.0003). Since cardiac myocytes are terminally differentiated cells that have lost their ability to divide and seemingly have limited DNA repair capacities, their levels might accumulate with time and thereby affect heart cell function or viability. Substantial interindividual differences between DNA adduct levels were observed, and persons with severe coronary artery disease (CAD), as assessed by coronary angiography, had higher DNA adduct levels than persons with no or mild CAD (P=0.04). As polymorphisms in GST genes have been shown to modulate DNA adduct levels and risk for lung cancer in smokers, we explored for the first time whether the GST polymorphisms could also explain deviating heart DNA adduct levels and CAD risk. However, no relation could be found between these covariants. In contrast, a VDR genotype, which has been associated with decreased serum levels of the active hormonal form of vitamin D and increased risk for certain cancers, seemed to be related to severity of CAD (P=0.025). Our findings support the hypothesis that smoking‐related DNA damage may be involved in the onset of cardiovascular diseases and suggest that VDR genotype may be a useful susceptibility marker of CAD.—van Schooten, F. J., Hirvonen, A., Maas, L. M., de Mol, B. A., Kleinjans, J. C. S., Bell, D. A., Durrer, J. D. Putative susceptibility markers of coronary artery disease: association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue. FASEB J. 12, 1409–1417 (1998)


Respiratory Medicine | 2010

A profile of volatile organic compounds in breath discriminates COPD patients from controls.

J.J.B.N. van Berkel; J.W. Dallinga; G.M. Möller; Roger W. L. Godschalk; E.J.C. Moonen; Emiel F.M. Wouters; F.J. van Schooten

BACKGROUND Chronic obstructive pulmonary disease (COPD) is an inflammatory condition characterized by oxidative stress and the formation of volatile organic compounds (VOCs) secreted via the lungs. We recently developed a methodological approach able to identify profiles of VOCs in breath unique for patient groups. Here we applied this recently developed methodology regarding diagnosis of COPD patients. METHODS Fifty COPD patients and 29 controls provided their breath and VOCs were analyzed by gas chromatography-mass spectrometry to identify relevant VOCs. An additional 16 COPD patients and 16 controls were sampled in order to validate the model, and 15 steroid naïve COPD patients were sampled to determine whether steroid use affects performance. FINDINGS 1179 different VOCs were detected, of which 13 were sufficient to correctly classify all 79 subjects. Six of these 13 VOCs classified 92% of the subjects correctly (sensitivity: 98%, specificity: 88%) and correctly classified 29 of 32 subjects (sensitivity: 100%, specificity: 81%) from the independent validation population. Fourteen out of 15 steroid naïve COPD patients were correctly classified thus excluding treatment influences. INTERPRETATION This is the first study distinguishing COPD subjects from controls solely based on the presence of VOCs in breath. Analysis of VOCs might be highly relevant for diagnosis of COPD.


Clinical & Experimental Allergy | 2009

Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children

J.W. Dallinga; Charlotte Robroeks; J.J.B.N. van Berkel; E.J.C. Moonen; Roger W. L. Godschalk; Quirijn Jöbsis; Edward Dompeling; Emiel F.M. Wouters; F.J. van Schooten

Background The correct diagnosis of asthma in young children is often hard to achieve, resulting in undertreatment of asthmatic children and overtreatment in transient wheezers.


Mutation Research | 1997

32P-Postlabelling of aromatic DNA adducts in white blood cells and alveolar macrophages of smokers : saturation at high exposures

F.J. van Schooten; Roger W. L. Godschalk; A. Breedijk; Lou M. Maas; Erik Kriek; Harumasa Sakai; Gea Wigbout; Paul Baas; L. van 't Veer; N. van Zandwijk

DNA adducts may serve as a molecular dosimeter of exposure to cigarette smoke-associated carcinogens such as polycyclic aromatic hydrocarbons (PAH). Target tissues for cigarette smoke-induced carcinogenesis are rarely accessible; therefore, peripheral blood cells or cells obtained by bronchoalveolar lavage (BAL) may be used as surrogate sources of exposed DNA. However, the relationship between cigarette smoke exposure and aromatic-DNA adducts in white blood cells and BAL cells is still unclear. In this study, we examined DNA adduct formation in lymphocytes and BAL cells in several populations of smoking individuals by means of 32P-postlabelling. Significant correlations between the amount of cigarettes smoked per day and the level of aromatic-DNA adducts were found in lymphocytes. In BAL cells, DNA adduct levels were associated with age (p = 0.05) and gender (p = 0.10) after adjustment for smoking behaviour. Adduct formation levelled off at higher exposure levels, suggesting less efficient adduct formation; decreases in the formation of adducts per unit of exposure were found in lymphocytes (r(s) = -0.80, p < 0.001) and BAL cells (r(s) = -0.72, p < 0.001). To assess intra-individual variation in adduct levels at constant smoking behaviour, sampling was repeated after a period of 2 and 6 months. In lymphocytes, repeated measurements with an interval of 2 months were highly correlated (r = 0.84, p = 0.009, n = 8), whereas repeated measurements with an interval of 6 months showed no correlation (r = 0.30, p = 0.27, n = 16). Repeated measurements in BAL cells showed a significant correlation after 6 months (r = 0.68, p = 0.03, n = 10). Furthermore, in a group of occupationally exposed aluminium workers, adduct levels in total white blood cells were correlated with the average concentrations of PAH in the ambient air of workers who smoked cigarettes, whereas in non-smokers, no such relationship was found. We conclude that cigarette smoking may directly or indirectly influence DNA adduct levels and saturation of DNA adduct formation may occur, leading to non-linear dose-response relationships.


Cancer Epidemiology, Biomarkers & Prevention | 2009

Genetic Variants of Methyl Metabolizing Enzymes and Epigenetic Regulators: Associations with Promoter CpG Island Hypermethylation in Colorectal Cancer

S. de Vogel; Kim A.D. Wouters; Ralph W.H. Gottschalk; F.J. van Schooten; A.F.P.M. de Goeij; A.P. de Bruine; R.A. Goldbohm; P.A. van den Brandt; Matty P. Weijenberg; M. van Engeland

Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of folate metabolizing enzymes (MTHFR, MTR, and MTRR), DNA methyltransferase DNMT3b, and histone methyltransferases (EHMT1, EHMT2, and PRDM2), with colorectal cancers, with or without the CpG island methylator phenotype (CIMP), MLH1 hypermethylation, or microsatellite instability. Incidence rate ratios were calculated in case-cohort analyses, with common homozygotes as reference, among 659 cases and 1,736 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852). Men with the MTHFR 677TT genotype were at decreased colorectal cancer risk (incidence rate ratio, 0.49; P = 0.01), but the T allele was associated with increased risk in women (incidence rate ratio, 1.39; P = 0.02). The MTR 2756GG genotype was associated with increased colorectal cancer risk (incidence rate ratio, 1.58; P = 0.04), and inverse associations were observed among women carrying DNMT3b C→T (rs406193; incidence rate ratio, 0.72; P = 0.04) or EHMT2 G→A (rs535586; incidence rate ratio, 0.76; P = 0.05) polymorphisms. Although significantly correlated (P < 0.001), only 41.5% and 33.3% of CIMP tumors harbored MLH1 hypermethylation or microsatellite instability, respectively. We observed inverse associations between MTR A2756G and CIMP among men (incidence rate ratio, 0.58; P = 0.04), and between MTRR A66G and MLH1 hypermethylation among women (incidence rate ratio, 0.55; P = 0.02). In conclusion, MTHFR, MTR, DNMT3b, and EHMT2 polymorphisms are associated with colorectal cancer, and rare variants of MTR and MTRR may reduce promoter hypermethylation. The incomplete overlap between CIMP, MLH1 hypermethylation, and microsatellite instability indicates that these related “methylation phenotypes” may not be similar and should be investigated separately. (Cancer Epidemiol Biomarkers Prev 2009;18(11):3086–96)


Pharmacogenetics | 2001

Modulation of DNA and protein adducts in smokers by genetic polymorphisms in GSTM1,GSTT1, NAT1 and NAT2.

R.W.L. Godschalk; J.W. Dallinga; H. Wikman; A. Risch; J.C.S. Kleinjans; Helmut Bartsch; F.J. van Schooten

The formation of DNA and protein adducts by environmental pollutants is modulated by host polymorphisms in genes that encode metabolizing enzymes. In our study on 67 smokers, aromatic-DNA adduct levels were examined by nuclease P1 enriched 32P-postlabelling in mononuclear blood cells (MNC) and 4-aminobiphenyl-haemoglobin adducts (4-ABP-Hb) by gas chromatography-mass spectroscopy. Genetic polymorphisms in glutathione S-transferase M1 (GSTM1), T1 (GSTT1) and N-acetyl-transferase 1 (NAT1) and 2 (NAT2) were assessed by polymerase chain reaction-based methods. DNA adduct levels, adjusted for the amount of cigarettes smoked per day, were higher in GSTM1(-/-) individuals (1.30 +/- 0.57 adducts per 108 nucleotides) than in GSTM1(+) subjects (1.03 +/- 0.56, P = 0.05), higher in NAT1 slow acetylators (1.58 +/- 0.54) than in NAT1 fast acetylators (1.11 +/- 0.58, P = 0.05) and were also found to be associated with the NAT2 acetylator status (1.29 +/- 0.64 and 1.03 +/- 0.46, respectively, for slow and fast acetylators, P = 0.06). An effect of GSTT1 was only found in combination with the NAT2 genotype; individuals with the GSTT1(-/-) and NAT2-slow genotype contained higher adduct levels (1.80 +/- 0.68) compared to GSTT1(+)/NAT2 fast individuals (0.96 +/- 0.36). Highest DNA adduct levels were observed in slow acetylators for both NAT1 and NAT2 also lacking the GSTM1 gene (2.03 +/- 0.17), and lowest in GSTM1(+) subjects with the fast acetylator genotype for both NAT1 and NAT2 (0.91 +/- 0.45, P = 0.01). No overall effects of genotypes were observed on 4-ABP-Hb levels. However, in subjects smoking less than 25 cigarettes per day, 4-ABP-Hb levels were higher in NAT2 slow acetylators (0.23 +/- 0.10 ng/g Hb) compared to fast acetylators (0.15 +/- 0.07, P = 0.03). These results provide further evidence for the combined effects of genetic polymorphisms in GSTM1, GSTT1, NAT1 and NAT2 on DNA and protein adduct formation in smoking individuals and indicate that, due to the complex carcinogen exposure, simultaneous assessment of multiple genotypes may identify individuals at higher cancer risk.


European Respiratory Journal | 2009

Genetic variation as a predictor of smoking cessation success. A promising preventive and intervention tool for chronic respiratory diseases

Marieke Quaak; C.P. van Schayck; Ad M. Knaapen; F.J. van Schooten

Tobacco smoking continues to be the largest preventable cause of premature morbidity and mortality throughout the world, including chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease. Although most smokers are highly motivated to quit and many smoking cessation therapies are available, cessation rates remain very low. Recent research strongly suggests that variation in genetic background is an important determinant of smoking behaviour and addiction. Since these genetic variants might also influence the response to smoking cessation pharmacotherapies, it is likely that assessment of genetic background could be a promising tool to guide selection of the most effective cessation treatment for an individual smoker. Recently, it has been shown that genetic variants in the dopaminergic system, opioid receptors, the bupropion-metabolising enzyme CYP2B6 and the nicotine-metabolising enzyme CYP2A6 may play an important role in predicting smoking cessation responses to nicotine replacement therapy and bupropion treatment. Despite the progress that has been made, several challenges will still have to be overcome before genetically tailored smoking cessation therapy can be implemented in standard clinical practice.


Reproductive Toxicology | 2010

An abbreviated protocol for multilineage neural differentiation of murine embryonic stem cells and its perturbation by methyl mercury.

Peter T. Theunissen; Sjors H.W. Schulpen; D.A.M. van Dartel; Sanne A.B. Hermsen; F.J. van Schooten; Aldert H. Piersma

Alternative assays are highly desirable to reduce the extensive experimental animal use in developmental toxicity testing. In the present study, we developed an improved test system for assessing neurodevelopmental toxicity using differentiating embryonic stem cells. We advanced previously established methods by merging, modifying and abbreviating the original 20-day protocol into a more efficient 13-day neural differentiation protocol. Using morphological observation, immunocytochemistry, gene expression and flow cytometry, it was shown predominantly multiple lineages of neuroectodermal cells were formed in our protocol and to a lower extent, endodermal and mesodermal differentiated cell types. This abbreviated protocol should lead to an advanced screening method using morphology in combination with selected differentiation markers aimed at predicting neurodevelopmental toxicity. Finally, the assay was shown to express differential sensitivity to a model developmental neurotoxicant, methyl mercury.


Mutagenesis | 2010

In vitro evaluation of baseline and induced DNA damage in human sperm exposed to benzo[a]pyrene or its metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide, using the comet assay

V. Sipinen; Julian Laubenthal; Adolf Baumgartner; Eduardo Cemeli; Joost O. Linschooten; Roger W. L. Godschalk; F.J. van Schooten; Diana Anderson; Gunnar Brunborg

Exposure to genotoxins may compromise DNA integrity in male reproductive cells, putting future progeny at risk for developmental defects and diseases. To study the usefulness of sperm DNA damage as a biomarker for genotoxic exposure, we have investigated cellular and molecular changes induced by benzo[a]pyrene (B[a]P) in human sperm in vitro, and results have been compared for smokers and non-smokers. Sperm DNA obtained from five smokers was indeed more fragmented than sperm of six non-smokers (mean % Tail DNA 26.5 and 48.8, respectively), as assessed by the alkaline comet assay (P < 0.05). B[a]P-related DNA adducts were detected at increased levels in smokers as determined by immunostaining. Direct exposure of mature sperm cells to B[a]P (10 or 25 μM) caused moderate increases in DNA fragmentation which was independent of addition of human liver S9 mix for enzymatic activation of B[a]P, suggesting some unknown metabolism of B[a]P in ejaculates. In vitro exposure of samples to various doses of B[a]P (with or without S9) did not reveal any significant differences in sensitivity to DNA fragmentation between smokers and non-smokers. Incubations with the proximate metabolite benzo[a]pyrene-r-7,t-8-dihydrodiol-t9,10-epoxide (BPDE) produced DNA fragmentation in a dose-dependent manner (20 or 50 μM), but only when formamidopyrimidine DNA glycosylase treatment was included in the comet assay. These levels of DNA fragmentation were, however, low in relation to very high amounts of BPDE–DNA adducts as measured with 32P postlabelling. We conclude that sperm DNA damage may be useful as a biomarker of direct exposure of sperm using the comet assay adapted to sperm, and as such the method may be applicable to cohort studies. Although the sensitivity is relatively low, DNA damage induced in earlier stages of spermatogenesis may be detected with higher efficiencies.


Environmental and Molecular Mutagenesis | 2000

Induction of DNA adducts by several polychlorinated biphenyls.

P.A.E.L. Schilderman; Lou M. Maas; D. M. F. A. Pachen; T.M.C.M. de Kok; J.C.S. Kleinjans; F.J. van Schooten

It is known that lower‐chlorinated biphenyls are metabolically activated to electrophilic quinoid species capable of binding to DNA. Also, certain metabolites are capable of redox cycling, thereby increasing oxidative stress in biological systems. In the present study, we tested mono‐, di‐, tri‐, tetra‐, penta‐, hexa‐, and heptachlorinated biphenyls for their ability to bind with DNA and to induce oxidative DNA damage. We present additional evidence that several PCB congeners form DNA adducts after metabolic activation, which can be detected by the nuclease P1‐ or butanol‐enrichment procedures of the 32P‐postlabeling technique. Butanol and nuclease P1 enrichments showed different adduct recoveries, depending on the level of chlorination of the biphenyls. Application of the nuclease P1 enrichment showed that the incubation of 2‐chloro‐; 3,4‐dichloro‐; 2,4,4′‐trichloro‐; 3,4,5‐trichloro‐; and 2,2′,5,5′‐tetrachlorobiphenyl with calf thymus DNA and liver microsomes from rats treated with phenobarbital, followed by oxidation with a peroxidase, produced five to eight different DNA adducts. For these lower‐chlorinated biphenyls, butanol enrichment generally showed a lower recovery. For some higher substituted congeners (3,3′,4,4′,5‐pentachloro‐, 2,2′,3,4,4′,5′‐hexachloro‐, 2,2′,4,4′,5,5′‐hexachloro‐, and 2,2′,3,4,4′,5,5′‐heptachlorobiphenyl), after butanol enrichment a single dominant spot was observed, which was absent in the nuclease P1 procedure. After incubation of calf thymus DNA with either higher‐ or lower‐chlorinated PCB congeners, we were not able to detect significantly increased levels of oxidative DNA damage above background levels, measured as 8‐oxo‐7,8‐dihydro‐2′deoxyguanosine. In view of the carcinogenicity of PCB mixtures in animals and the ability of PCB metabolites to bind covalently to DNA, rats were orally treated with a mixture of PCBs (Aroclor 1242). PCB‐DNA adduct levels were analyzed in PCB target organs: liver, thymus, glandular stomach, spleen, testes, seminal vesicles and prostate DNA. In vivo PCB‐DNA adducts could not be detected by either the butanol‐ or by the NP1‐enrichment procedure in rat target tissue DNA. Also, no differences in oxidative DNA damage could be observed between PCB‐treated rats and controls. These results indicate a lack of DNA reactivity of PCB mixtures in vivo. Environ. Mol. Mutagen. 36:79–86, 2000.

Collaboration


Dive into the F.J. van Schooten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.W.L. Godschalk

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Emiel F.M. Wouters

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge