F. Javier Lopez-Jaramillo
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Javier Lopez-Jaramillo.
Journal of Materials Chemistry | 2010
Mariano Ortega-Muñoz; Julia Morales-Sanfrutos; Alicia Megia-Fernandez; F. Javier Lopez-Jaramillo; Fernando Hernandez-Mateo; Francisco Santoyo-Gonzalez
The combination of silica as support and vinyl sulfone as reactive group led to a pre-activated material that readily reacts to form covalent bonds by Michael-type addition with both amine and thiol groups naturally occurring in biomolecules in mild conditions compatible with the biological nature of the enzymes. A simple two step synthetic strategy was designed to access this functionalized hybrid material. Two types of vinyl sulfone silicas (N-type and S-type) differing in the chemical nature of the linkers between the silica particle and the reactive vinyl sulfone group were prepared by implementation of this strategy. The capabilities of those vinyl sulfone silicas were evaluated with the model enzymes invertase, lactase and lysozyme. Both S-type and N-type vinyl sulfone silicas coupled efficiently with the model enzymes even at 4 °C by simple combination of the species and the immobilized enzymes retained the enzymatic activity. The linker showed to play a major role in the non covalent interactions between the enzymes and the silicas. In terms of capacity, the S-type material is the best option although its poor flow rate when packed in columns invalidates its applications for low pressure liquid chromatography. The capabilities of the N-type material were successfully put to the test as a pre-packed column for the immobilization of invertase and further demonstrated with two real cases of relevance in proteomics: (i) purification of glutathione-S-transferase (GST) and (ii) identification of proteins that interact with thioredoxin h2 from Pisum sativum.
BMC Plant Biology | 2013
Juan C. Begara-Morales; F. Javier Lopez-Jaramillo; Beatriz Sánchez-Calvo; Alfonso Carreras; Mariano Ortega-Muñoz; Francisco Santoyo-Gonzalez; Francisco J. Corpas; Juan B. Barroso
BackgroundS-nitrosylaton is implicated in the regulation of numerous signaling pathways with a diversity of regulatory roles. The high lability of the S-NO bond makes the study of proteins regulated by S-nitrosylation/denitrosylation a challenging task and most studies have focused on already S-nitrosylated proteins. We hypothesize that: i) S-nitrosoglutathione (GSNO) transnitrosylation is a feasible mechanism to account for the physiological S-nitrosylation of rather electropositive sulfur atoms from proteins, ii) affinity chromatography is a suitable approach to isolate proteins that are prone to undergo S-transnitrosylation and iii) vinyl sulfone silica is a suitable chromatographic bead.ResultsThe combination of vinyl sulfone silica with GSNO yielded an affinity resin that withstood high ionic strength without shrinking or deforming and that it was suitable to isolate potential GSNO transnitrosylation target candidates. Fractions eluted at 1500 mM NaCl resulted in a symmetrical peak for both, protein and S-nitrosothiols, supporting the idea of transnitrosylation by GSNO as a selective process that involves strong and specific interactions with the target protein. Proteomic analysis led to the identification of 22 physiological significant enzymes that differ with the tissue analyzed, being regulatory proteins the most abundant group in hypocotyls. The identification of chloroplastidic FBPase, proteasome, GTP-binding protein, heat shock Hsp70, syntaxin, catalase I, thioredoxin peroxidase and cytochrome P450 that have already been reported as S-nitrosylated by other techniques can be considered as internal positive controls that validate our experimental approach. An additional validation was provided by the prediction of the S-nitrosylation sites in 19 of the GSNO transnitrosylation target candidates.ConclusionsVinyl sulfone silica is an open immobilization support that can be turned ad hoc and in a straightforward manner into an affinity resin. Its potential in omic sciences was successfully put to test in the context of the analysis of post-translational modification by S-nitrosylation with two different tissues: mature pea leaves and embryogenic sunflower hypocotyls. The identified proteins reveal an intriguing overlap among S-nitrosylation and both tyrosine nitration and thioredoxin regulation. Chloroplastidic FBPase is a paradigm of such overlap of post-translational modifications since it is reversible modified by thioredoxin and S-nitrosylation and irreversibly by tyrosine nitration. Our results suggest a complex interrelation among different modulation mechanisms mediated by NO-derived molecules.
Bioconjugate Chemistry | 2016
M. Dolores Giron-Gonzalez; Rafael Salto-Gonzalez; F. Javier Lopez-Jaramillo; Alfonso Salinas-Castillo; Ana Belén Jódar-Reyes; Mariano Ortega-Muñoz; Fernando Hernandez-Mateo; Francisco Santoyo-Gonzalez
Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex of LMW-PEI and CA as promising generic nonviral gene carriers.
Archive | 2012
F. Javier Lopez-Jaramillo; Fernando Hernandez-Mateo; Francisco Santoyo-Gonzalez
The authors acknowledge Direccion General de Investigacion Cientifica y Tecnica (DGICYT) (CTQ2008-01754) and Junta de Andalucia (P07-FQM-02899) for financial support.
Bioconjugate Chemistry | 2014
M. Dolores Giron-Gonzalez; Arturo Morales-Portillo; Alfonso Salinas-Castillo; F. Javier Lopez-Jaramillo; Fernando Hernandez-Mateo; Francisco Santoyo-Gonzalez; Rafael Salto-Gonzalez
The receptor for advanced glycation end products (RAGE) is involved in diabetes or angiogenesis in tumors. Under pathological conditions, RAGE is overexpressed and upon ligand binding and internalization stimulates signaling pathways that promote cell proliferation. In this work, amino dendritic polymers PEI 25 kDa and alkylated derivatives of PAMAM-G2 were engineered by the nonenzymatic Maillard glycation reaction to generate novel AGE-containing gene delivery vectors targeting the RAGE. The glycated dendritic polymers were easily prepared and retained the capability to bind and protect DNA from endonucleases. Furthermore, while glycation decreased the transfection efficiency of the dendriplexes in CHO-k1 cells which do not express RAGE, glycated dendriplexes acted as efficient transfection reagents in CHO-k1 cells which stably express recombinant RAGE. In addition, preincubation with BSA-AGEs, a natural ligand of the RAGE, or dansyl cadaverine, an inhibitor of the RAGE internalization, blocked transfection, confirming their specificity toward RAGE. The results were confirmed in NRK and RAW264.7 cell lines, which naturally express the receptor. The glycated compounds retain their transfection efficiency in the presence of serum and promote in vivo transfection in a mouse model. Accordingly, RAGE is a suitable molecular target for the development of site-directed engineered glycated nonviral gene vectors.
ChemMedChem | 2014
Teresa del Castillo; Francisco Santoyo-Gonzalez; Stefan Magez; F. Javier Lopez-Jaramillo; Jose A. Garcia-Salcedo
Cyclodextrins have been conjugated to target various receptors and have also been functionalized with carbohydrates for targeting specific organs. However, this approach is based on a rigid design that implies the ad hoc synthesis of each cyclodextrin‐targeting agent conjugate. We hypothesized that: 1) a modular design that decouples the carrier function from the targeting function leads to a flexible system, 2) combining the reactivity of the vinyl sulfone group toward biomolecules that act as targeting agents with the ability of cyclodextrin to form complexes with a wide range of drugs may yield a versatile system that allows the targeting of different organs with different drugs, and 3) the higher reactivity of histidine residues toward the vinyl sulfone group can be exploited to couple the cyclodextrin to the targeting system with a degree of regioselectivity. As a proof of concept, we synthesized a monovinyl sulfone β‐cyclodextrin (module responsible for the payload), which, after coupling to recombinant antibody fragments raised against Trypanosoma brucei (module responsible for targeting) and loading with nitrofurazone (module responsible for therapeutic action) resulted in an effective delivery system that targets the surface of the parasites and shows trypanocidal activity.
Chemistry-an Asian Journal | 2016
Francisco Santoyo-Gonzalez; Mariano Ortega-Muñoz; M. Dolores Giron-Gonzalez; Rafael Salto-Gonzalez; Ana Belen Jodar Reyes; Samantha E. De Jesus; F. Javier Lopez-Jaramillo; Fernando Hernandez-Mateo
A novel one-pot method for the synthesis of polyethyleneimine (PEI)-coated gold nanoparticles (AuPEI-NPs) that combines the reductant-stabilizer properties of PEI with microwave irradiation starting from hydrogen tetrachloroaurate acid (HAuCl4 ) and branched PEI 25 kDa (b25kPEI) was explored. The method was straightforward, green, and low costing, for which the Au/PEI ratio (1:1 to 1:128 w/w) was a key parameter to modulate their capabilities as DNA delivery nanocarriers. Transfection assays in CHO-k1 cells demonstrated that AuPEI-NPs with 1:16 and 1:32 w/w ratios behaved as effective DNA gene vectors with improved transfection efficiencies (twofold) and significantly lower toxicity than unmodified b25kPEI and Lipofectamine 2000. The transfection mediated by these AuPEI-NP-DNA polyplexes preferentially used the caveolae-mediated route for intracellular internalization, as shown by studies performed by using specific internalization inhibitors as well as colocalization with markers of clathrin- and caveolae-dependent pathways. The AuPEI-NP polyplexes preferentially used the more efficient caveolae internalization pathway to promote transfection, a fact that supports their higher transfection efficiency relative to that of Lipofectamine 2000. In addition, intracellular trafficking of the AuPEI-NPs was studied by transmission electron microscopy.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2008
Lidia Rodríguez-Fernández; F. Javier Lopez-Jaramillo; Adelbert Bacher; Markus Fischer; Sevil Weinkauf
Icosahedral macromolecules have a wide spectrum of potential nanotechnological applications, the success of which relies on the level of accuracy at which the molecular structure is known. Lumazine synthase from Bacillus subtilis forms a 150 A icosahedral capsid consisting of 60 subunits and crystallizes in space group P6(3)22 or C2. However, the quality of these crystals is poor and structural information is only available at 2.4 A resolution. As classical strategies for growing better diffracting crystals have so far failed, protein engineering has been employed in order to improve the overexpression and purification of the molecule as well as to obtain new crystal forms. Two cysteines were replaced to bypass misfolding problems and a charged surface residue was replaced to force different molecular packings. The mutant protein crystallizes in space group R3, with unit-cell parameters a = b = 313.02, c = 365.77 A, alpha = beta = 90.0, gamma = 120 degrees , and diffracts to 1.6 A resolution.
ACS Omega | 2018
Mariano Ortega-Muñoz; Fernando Rodríguez-Serrano; Eduardo De los Reyes-Berbel; Nuria Mut-Salud; Fernando Hernandez-Mateo; Andrea Rodríguez-López; F. Javier Lopez-Jaramillo; Francisco Santoyo-Gonzalez
Saponins are potential wide-spectrum antitumor drugs, and copper(I) catalyzed azide–alkyne 1,3-dipolar cycloaddition is a suitable approach to synthesizing saponin-like compounds by regioselective glycosylation of the C2/C3 hydroxyl and C28 carboxylic groups of triterpene aglycones maslinic acid (MA) and oleanolic acid (OA). Biological studies on the T-84 human colon carcinoma cell line support the role of the hydroxyl groups at C2/C3, the influence of the aglycone, and the bulky nature of the substituents in C28. OA bearing a α-d-mannose moiety at C28 (compound 18) focused our interest because the estimated inhibitory concentration 50 was similar to that reported for ginsenoside Rh2 against colon cancer cells and it inhibits the G1–S phase transition affecting the cell viability and apoptosis. Considering that triterpenoids from natural sources have been identified as inhibitors of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling, docking studies were conducted to evaluate whether NF-κB may be a potential target. Results are consistent with the biological study and predict a similar binding mode of MA and compound 18 to the p52 subunit from NF-κB but not for OA. The fact that the binding site is shared by the NF-κB inhibitor 6,6-dimethyl-2-(phenylimino)-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one supports the result and points to NF-κB as a potential target of both MA and compound 18.
Chemcatchem | 2017
Mariano Ortega-Muñoz; Víctor Blanco; Fernando Hernandez-Mateo; F. Javier Lopez-Jaramillo; Francisco Santoyo-Gonzalez
Gold nanoparticles (AuNPs) can be obtained from HAuCl4 by using poly(ethyleneimine) (PEI) as both reductant and stabilizing agent. However, the known affinity of PEI for different materials has not been exploited to coat them and turn their surface catalytic. We demonstrate that the irradiation of a solution of HAuCl4 and branched PEI 1800 (bPEI2K) with microwave (MW) yields PEI‐stabilized AuNPs (MW‐PEI@AuNPs) with an average size of 7.6 nm that are catalytically active in the reduction with NaBH4 of different nitroarenes functionalized with a variety of functional groups. Moreover, the as‐prepared MW‐PE@‐AuNPs show affinity for different materials such as polystyrene (standard spectrophotometry disposal cuvettes), polypropylene (Falcon‐type tubes), and silica (Silica gel 60), turning their surface catalytic without any additional synthetic step. This feature was exploited to transform standard tubing (Tygon, poly(ether ether ketone), and stainless steel) into flow reactors by simple passage of a solution of MW‐PEI@AuNPs. This straightforward functionalization is especially appealing in the case of the stainless‐steel tubing, one of the materials more widely used in HPLC, which is of interest for flow nanocatalysis.