Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Joseph Heremans is active.

Publication


Featured researches published by F. Joseph Heremans.


Nature | 2011

Room temperature coherent control of defect spin qubits in silicon carbide

William F. Koehl; Bob B. Buckley; F. Joseph Heremans; Greg Calusine; D. D. Awschalom

Electronic spins in semiconductors have been used extensively to explore the limits of external control over quantum mechanical phenomena. A long-standing goal of this research has been to identify or develop robust quantum systems that can be easily manipulated, for future use in advanced information and communication technologies. Recently, a point defect in diamond known as the nitrogen–vacancy centre has attracted a great deal of interest because it possesses an atomic-scale electronic spin state that can be used as an individually addressable, solid-state quantum bit (qubit), even at room temperature. These exceptional quantum properties have motivated efforts to identify similar defects in other semiconductors, as they may offer an expanded range of functionality not available to the diamond nitrogen–vacancy centre. Notably, several defects in silicon carbide (SiC) have been suggested as good candidates for exploration, owing to a combination of computational predictions and magnetic resonance data. Here we demonstrate that several defect spin states in the 4H polytype of SiC (4H-SiC) can be optically addressed and coherently controlled in the time domain at temperatures ranging from 20 to 300 kelvin. Using optical and microwave techniques similar to those used with diamond nitrogen–vacancy qubits, we study the spin-1 ground state of each of four inequivalent forms of the neutral carbon–silicon divacancy, as well as a pair of defect spin states of unidentified origin. These defects are optically active near telecommunication wavelengths, and are found in a host material for which there already exist industrial-scale crystal growth and advanced microfabrication techniques. In addition, they possess desirable spin coherence properties that are comparable to those of the diamond nitrogen–vacancy centre. This makes them promising candidates for various photonic, spintronic and quantum information applications that merge quantum degrees of freedom with classical electronic and optical technologies.


Applied Physics Letters | 2012

Engineering shallow spins in diamond with nitrogen delta-doping

Kenichi Ohno; F. Joseph Heremans; Lee C. Bassett; Bryan Myers; D.M. Toyli; Ania C. Bleszynski Jayich; Chris J. Palmstrøm; D. D. Awschalom

We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T2 > 100 μs at d = 5 nm and T2 > 600 μs at d ≥ 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.


Proceedings of the National Academy of Sciences of the United States of America | 2013

All-optical control of a solid-state spin using coherent dark states

Christopher G. Yale; Bob B. Buckley; David J. Christle; Guido Burkard; F. Joseph Heremans; Lee C. Bassett; D. D. Awschalom

The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center’s spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed.


Nature Physics | 2017

Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system

Brian B. Zhou; Alexandre Baksic; Hugo Ribeiro; Christopher G. Yale; F. Joseph Heremans; Paul C. Jerger; Adrian Auer; Guido Burkard; Aashish A. Clerk; D. D. Awschalom

Adiabatic processes are useful in quantum control, but they are slow. A way around this is to exploit shortcuts to adiabaticity, which can speed things up — for instance, by boosting stimulated Raman adiabatic passage. Adiabatic processes are useful for quantum technologies1,2,3 but, despite their robustness to experimental imperfections, they remain susceptible to decoherence due to their long evolution time. A general strategy termed shortcuts to adiabaticity4,5,6,7,8,9 (STA) aims to remedy this vulnerability by designing fast dynamics to reproduce the results of a slow, adiabatic evolution. Here, we implement an STA technique known as superadiabatic transitionless driving10 (SATD) to speed up stimulated Raman adiabatic passage1,11,12,13,14 in a solid-state lambda system. Using the optical transitions to a dissipative excited state in the nitrogen-vacancy centre in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the initialization and transfer of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results suggest that STA could be effective for controlling a variety of solid-state open quantum systems11,12,13,14,15,16.


Science | 2014

Ultrafast optical control of orbital and spin dynamics in a solid-state defect

Lee C. Bassett; F. Joseph Heremans; David J. Christle; Christopher G. Yale; Guido Burkard; Bob B. Buckley; D. D. Awschalom

Manipulating a defect in diamond Like magnetic storage in todays classical computers, tiny “magnets” associated with electronic and nuclear states—spins—are promising qubits (quantum bits) for the future. Electronic spins in special defects in diamond called nitrogen-vacancy (NV) centers are one example. Whereas most applications focus on the least energetic (ground) state of an NV center, Bassett et al. explored the properties of the higher-energy (excited) state (see the Perspective by Childress). They used light pulses to bring the system into the excited state and to vary the time it stayed there. In this way, they could both deduce the electronic structure of the excited state and manipulate the ground state spin. Similar methods may be applicable to other quantum information systems. Science, this issue p. 1333; see also p. 1247 The electronic spin in a nitrogen-vacancy center in diamond is manipulated with optical pulses alone. [Also see Perspective by Childress] Atom-scale defects in semiconductors are promising building blocks for quantum devices, but our understanding of their material-dependent electronic structure, optical interactions, and dissipation mechanisms is lacking. Using picosecond resonant pulses of light, we study the coherent orbital and spin dynamics of a single nitrogen-vacancy center in diamond over time scales spanning six orders of magnitude. We develop a time-domain quantum tomography technique to precisely map the defect’s excited-state Hamiltonian and exploit the excited-state dynamics to control its ground-state spin with optical pulses alone. These techniques generalize to other optically addressable nanoscale spin systems and serve as powerful tools to characterize and control spin qubits for future applications in quantum technology.


Applied Physics Letters | 2014

Three-dimensional localization of spins in diamond using 12C implantation

Kenichi Ohno; F. Joseph Heremans; Charles F. de las Casas; Bryan Myers; Benjamín Alemán; Ania C. Bleszynski Jayich; D. D. Awschalom

We demonstrate three-dimensional localization of a single nitrogen-vacancy (NV) center in diamond by combining nitrogen doping during growth with a post-growth 12C implantation technique that facilitates vacancy formation in the crystal. We show that the NV density can be controlled by the implantation dose without necessitating increase of the nitrogen incorporation. By implanting a large 12C dose through nanoscale apertures, we can localize an individual NV center within a volume of (∼180 nm)3 at a deterministic position while repeatedly preserving a coherence time (T2) > 300 μs. This deterministic position control of coherent NV centers enables integration into NV-based nanostructures to realize scalable spin-sensing devices as well as coherent spin coupling mediated by photons and phonons.


Nature Photonics | 2016

Optical manipulation of the Berry phase in a solid-state spin qubit

Christopher G. Yale; F. Joseph Heremans; Brian B. Zhou; Adrian Auer; Guido Burkard; D. D. Awschalom

Phase relations between quantum states represent a resource for storing and processing quantum information. Although quantum phases are commonly controlled dynamically by tuning energetic interactions, the use of geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase in solid-state systems employ microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method to accumulate a geometric phase, the Berry phase, in an individual nitrogen–vacancy centre in diamond. Using stimulated Raman adiabatic passage controlled by diffraction-limited laser light, we loop the nitrogen–vacancy centres spin around the Bloch sphere to enclose an arbitrary Berry phase. We investigate the limits of this control due to the loss of adiabaticity and decoherence, as well as its robustness to noise introduced into the experimental control parameters. These techniques set the foundation for optical geometric manipulation in photonic networks of solid-state qubits linked and controlled by light. An all-optical manipulation of the Berry phase based on stimulated Raman adiabatic passage is demonstrated in an individual nitrogen–vacancy centre in diamond. The adiabatic control is 100 times faster than that demonstrated before in atomic systems.


Nano Letters | 2014

Engineered Micro- and Nanoscale Diamonds as Mobile Probes for High-Resolution Sensing in Fluid

Paolo Andrich; Benjamín Alemán; Jonathan C. Lee; Kenichi Ohno; Charles F. de las Casas; F. Joseph Heremans; Evelyn L. Hu; D. D. Awschalom

The nitrogen-vacancy (NV) center in diamond is an attractive platform for quantum information and sensing applications because of its room temperature operation and optical addressability. A major research effort focuses on improving the quantum coherence of this defect in engineered micro- and nanoscale diamond particles (DPs), which could prove useful for high-resolution sensing in fluidic environments. In this work we fabricate cylindrical diamonds particles with finely tuned and highly reproducible sizes (diameter and height ranging from 100 to 700 and 500 nm to 2 μm, respectively) using high-purity, single-crystal diamond membranes with shallow-doped NV centers. We show that the spin coherence time of the NV centers in these particles exceeds 700 μs, opening the possibility for the creation of ultrahigh sensitivity micro- and nanoscale sensors. Moreover, these particles can be efficiently transferred into a water suspension and delivered to the region to probe. In particular, we introduce a DP suspension inside a microfluidic circuit and control position and orientation of the particles using an optical trapping apparatus. We demonstrate a DC magnetic sensitivity of 9 μT/√Hz in fluid as well as long-term trapping stability (>30 h), which paves the way toward the use of high-sensitivity pulse techniques on contactless probes manipulated within biological settings.


npj Quantum Information | 2017

Long-range spin wave mediated control of defect qubits in nanodiamonds

Paolo Andrich; Charles F. de las Casas; Xiaoying Liu; Hope L. Bretscher; Jonson R. Berman; F. Joseph Heremans; Paul F. Nealey; D. D. Awschalom

The nitrogen-vacancy (NV) center in diamond has been extensively studied in recent years for its remarkable quantum coherence properties that make it an ideal candidate for room temperature quantum computing and quantum sensing schemes. However, these schemes rely on spin-spin dipolar interactions, which require the NV centers to be within a few nanometers from each other while still separately addressable, or to be in close proximity of the diamond surface, where their coherence properties significantly degrade. Here we demonstrate a method for overcoming these limitations using a hybrid yttrium iron garnet (YIG)-nanodiamond quantum system constructed with the help of directed assembly and transfer printing techniques. We show that YIG spin-waves can amplify the oscillating field of a microwave source by more than two orders of magnitude and efficiently mediate its coherent interactions with an NV center ensemble. These results demonstrate that spinwaves in ferromagnets can be used as quantum buses for enhanced, long-range qubit interactions, paving the way to ultra-efficient manipulation and coupling of solid state defects in hybrid quantum networks and sensing devices.


Physical Review Letters | 2017

Holonomic Quantum Control by Coherent Optical Excitation in Diamond

Brian B. Zhou; Paul C. Jerger; Vladislav O. Shkolnikov; F. Joseph Heremans; Guido Burkard; D. D. Awschalom

Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

Collaboration


Dive into the F. Joseph Heremans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Auer

University of Konstanz

View shared research outputs
Researchain Logo
Decentralizing Knowledge