F. K. Röpke
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. K. Röpke.
Nature | 2010
Rüdiger Pakmor; M. Kromer; F. K. Röpke; S. A. Sim; Ashley J. Ruiter; W. Hillebrandt
Type Ia supernovae are thought to result from thermonuclear explosions of carbon–oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of ∼0.9M⊙. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M⊙ to 0.9M⊙.
Nature | 2009
Daniel Kasen; F. K. Röpke; S. E. Woosley
Type Ia supernovae result when carbon-oxygen white dwarfs in binary systems accrete mass from companion stars, reach a critical mass and explode. The near uniformity of their light curves makes these supernovae good ‘standard candles’ for measuring cosmic expansion, but a correction must be applied to account for the fact that the brighter ones have broader light curves. One-dimensional modelling, with a certain choice of parameters, can reproduce this general trend in the width–luminosity relation; but the processes of ignition and detonation have recently been shown to be intrinsically asymmetric, so parameterization must have its limits. Here we report multi-dimensional modelling of the explosion physics and radiative transfer, which reveals that the breaking of spherical symmetry is a critical factor in determining both the width–luminosity relation and the observed scatter about it. The deviation from spherical symmetry can also explain the finite polarization detected in the light from some supernovae. The slope and normalization of the width–luminosity relation has a weak dependence on certain properties of the white dwarf progenitor, in particular the trace abundances of elements other than carbon and oxygen. Failing to correct for this effect could lead to systematic overestimates of up to 2 per cent in the distance to remote supernovae.
Astronomy and Astrophysics | 2010
M. Fink; F. K. Röpke; W. Hillebrandt; Ivo R. Seitenzahl; S. A. Sim; M. Kromer
The explosion of sub-Chandrasekhar mass white dwarfs via the double detonation scenario is a potential explanation for type Ia supernovae. In this scenario, a surface detonation in a heli um layer initiates a detonation in the underlying carbon/oxygen core leading to an explosion. For a given core mass, a lower bound has been determined on the mass of the helium shell required for dynamical burning during a helium flash, which is a necessary prerequis ite for detonation. For a range of core and corresponding minimum helium shell masses, we investigate whether an assumed surface helium detonation is capable of triggering a subsequent detonation in the core even for this limiting case. We carried out hydrodynamic simulations on a co-expanding Eulerian grid in two dimensions assuming rotational symmetry. The detonations are propagated using the level-set approach and a simplified scheme for n uclear reactions that has been calibrated with a large nuclear network. The same network is used to determine detailed nucleosynthetic abundances in a post-processing step. Based on approximate detonation initiation criteria in the literature, we find th at secondary core
Monthly Notices of the Royal Astronomical Society | 2013
Ivo R. Seitenzahl; F. Ciaraldi-Schoolmann; F. K. Röpke; M. Fink; W. Hillebrandt; M. Kromer; Rüdiger Pakmor; Ashley J. Ruiter; S. A. Sim; Stefan Taubenberger
We present results for a suite of fourteen three-dimensional, high resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN I a simulations with detailed isotopic yield information. As such, it may serve as a database for Chandrasekhar-mass delayeddetonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ t he deflagration to detonation transition (DDT) probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300, and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with central density of 2.9× 10 9 g cm −3 , plus in addition one high central density (5.5× 10 9 g cm −3 ) and one low central density (1.0× 10 9 g cm −3 ) rendition of the 100 ignition kernel configuration. For each simulatio n we determined detailed nucleosynthetic yields by post-processing 10 6 tracer particles with a 384 nuclide reaction network. All delayed detonation models result in explosions unbinding the white dwarf, producing a range of 56 Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron group isotopes are not found at the lowest velocities, but rather at intermediate velocities (∼3, 000− 10, 000 km s −1 ) in a shell surrounding a 56 Ni-rich core. The models further predict relatively low velocity oxygen and carbon, with typical minimum velocities around 4, 000 and 10, 000 km s −1 , respectively.
The Astrophysical Journal | 2012
R. Pakmor; M. Kromer; S. Taubenberger; S. A. Sim; F. K. Röpke; W. Hillebrandt
One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M ☉ and 1.1 M ☉ combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M ☉ of 56Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.
The Astrophysical Journal | 2010
S. A. Sim; F. K. Röpke; W. Hillebrandt; M. Kromer; R. Pakmor; M. Fink; Ashley J. Ruiter; Ivo R. Seitenzahl
Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 M ☉ we obtain 56Ni masses between 0.3 and 0.8 M ☉, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at λ6355 and λ5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD.
Nature | 2010
Keiichi Maeda; S. Benetti; Maximilian D. Stritzinger; F. K. Röpke; Gaston Folatelli; Jesper Sollerman; S. Taubenberger; K. Nomoto; G. Leloudas; Mario Hamuy; Masaomi Tanaka; Paolo A. Mazzali; N. Elias-Rosa
Type Ia supernovae form an observationally uniform class of stellar explosions, in that more luminous objects have smaller decline-rates. This one-parameter behaviour allows type Ia supernovae to be calibrated as cosmological ‘standard candles’, and led to the discovery of an accelerating Universe. Recent investigations, however, have revealed that the true nature of type Ia supernovae is more complicated. Theoretically, it has been suggested that the initial thermonuclear sparks are ignited at an offset from the centre of the white-dwarf progenitor, possibly as a result of convection before the explosion. Observationally, the diversity seen in the spectral evolution of type Ia supernovae beyond the luminosity–decline-rate relation is an unresolved issue. Here we report that the spectral diversity is a consequence of random directions from which an asymmetric explosion is viewed. Our findings suggest that the spectral evolution diversity is no longer a concern when using type Ia supernovae as cosmological standard candles. Furthermore, this indicates that ignition at an offset from the centre is a generic feature of type Ia supernovae.
The Astrophysical Journal | 2012
F. K. Röpke; M. Kromer; Ivo R. Seitenzahl; R. Pakmor; S. A. Sim; S. Taubenberger; F. Ciaraldi-Schoolmann; W. Hillebrandt; Gregory Scott Aldering; P. Antilogus; Charles Baltay; S. Benitez-Herrera; S. Bongard; C. Buton; A. Canto; F. Cellier-Holzem; M. Childress; N. Chotard; Y. Copin; H. K. Fakhouri; M. Fink; D. Fouchez; E. Gangler; J. Guy; S. Hachinger; E. Y. Hsiao; J. Chen; M. Kerschhaggl; M. Kowalski; P. Nugent
The nearby supernova SN 2011fe can be observed in unprecedented detail. Therefore, it is an important test case for Type Ia supernova (SN Ia) models, which may bring us closer to understanding the physical nature of these objects. Here, we explore how available and expected future observations of SN 2011fe can be used to constrain SN Ia explosion scenarios. We base our discussion on three-dimensional simulations of a delayed detonation in a Chandrasekhar-mass white dwarf and of a violent merger of two white dwarfs (WDs)—realizations of explosion models appropriate for two of the most widely discussed progenitor channels that may give rise to SNe Ia. Although both models have their shortcomings in reproducing details of the early and near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory (SNfactory), the overall match with the observations is reasonable. The level of agreement is slightly better for the merger, in particular around maximum, but a clear preference for one model over the other is still not justified. Observations at late epochs, however, hold promise for discriminating the explosion scenarios in a straightforward way, as a nucleosynthesis effect leads to differences in the 55Co production. SN 2011fe is close enough to be followed sufficiently long to study this effect.
The Astrophysical Journal | 2010
Keiichi Maeda; F. K. Röpke; M. Fink; W. Hillebrandt; C. Travaglio; F.-K. Thielemann
For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 107 g cm–3—relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., 58Ni, 54Fe) is within a shell, showing a large off-set, above the bulk of 56Ni distribution, while species produced by the detonation are distributed more spherically.
Astronomy and Astrophysics | 2007
M. Fink; W. Hillebrandt; F. K. Röpke
Type Ia supernovae are believed to be white dwarfs disrupted by a thermonuclear explosion. Here we investigate the scenario in which a rather low-mass, carbon-oxygen (C + O) white dwarf accumulates helium on its surface in a sufficient amount for igniting a detonation in the helium shell before the Chandrasekhar mass is reached. In principle, this can happen on white dwarfs accreting from a non-degenerate companion or by merging a C + O white dwarf with a low-mass helium one. In this scenario, the helium detonation is thought to trigger a secondary detonation in the C + O core. It is therefore called the “double-detonation sub-Chandrasekhar” supernova model. By means of a set of numerical simulations, we investigate the robustness of this explosion mechanism for generic 1-M� models and analyze its observable predictions. Also a resolution dependence in numerical simulations is analyzed. Hydrodynamic simulations of the double-detonation sub-Chandrasekhar scenario are conducted in two and three spatial dimensions. The propagation of thermonuclear detonation fronts, both in helium and in the carbon-oxygen mixture, is computed by means of both a level-set function and a simplified description for nuclear reactions. The decision whether a secondary detonation is triggered in the white dwarf’s core or not is made based on criteria given in the literature. In a parameter study involving different initial flame geometries − − − [ � ] ] −