F. L. Bakharev
Saint Petersburg State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. L. Bakharev.
Applicable Analysis | 2013
F. L. Bakharev; S. A. Nazarov; Keijo Ruotsalainen
We study a spectral problem related to the Laplace operator in a singularly perturbed periodic waveguide. The waveguide is a quasi-cylinder which contains a periodic arrangement of inclusions. On the boundary of the waveguide, we consider both Neumann and Dirichlet conditions. We prove that provided the diameter of the inclusion is small enough the spectrum of Laplace operator contains band gaps, i.e. there are frequencies that do not propagate through the waveguide. The existence of the band gaps is verified using the asymptotic analysis of elliptic operators.
Zeitschrift für Angewandte Mathematik und Physik | 2017
F. L. Bakharev; Jari Taskinen
We study the spectral linear elasticity problem in an unbounded periodic waveguide, which consists of a sequence of identical bounded cells connected by thin ligaments of diameter of order
Doklady Mathematics | 2015
F. L. Bakharev; S. G. Matveenko; Sergey A. Nazarov
Quarterly Journal of Mechanics and Applied Mathematics | 2014
F. L. Bakharev; Keijo Ruotsalainen; Jari Taskinen
h >0
Applicable Analysis | 2012
F. L. Bakharev; S. A. Nazarov; Keijo Ruotsalainen
Integral Equations and Operator Theory | 2017
F. L. Bakharev; G. Cardone; Sergey A. Nazarov; Jari Taskinen
h>0. The essential spectrum of the problem is known to have band-gap structure. We derive asymptotic formulas for the position of the spectral bands and gaps, as
Zeitschrift Fur Analysis Und Ihre Anwendungen | 2017
F. L. Bakharev; Sergey Matveenko; Sergey A. Nazarov
St Petersburg Mathematical Journal | 2017
F. L. Bakharev; S. G. Matveenko; Sergey A. Nazarov
h \rightarrow 0
St Petersburg Mathematical Journal | 2018
F. L. Bakharev; S. G. Matveenko; Sergey A. Nazarov
Reports on Mathematical Physics | 2018
F. L. Bakharev; Pavel Exner
h→0.