Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Labarthe is active.

Publication


Featured researches published by F. Labarthe.


Critical Care Medicine | 2002

Late diagnosis of ornithine transcarbamylase defect in three related female patients: polymorphic presentations.

Annick Legras; F. Labarthe; F. Maillot; Marie-Ange Garrigue; Achille Kouatchet; Hélène Ogier De Baulny

Objective To describe three female patients of one family with different phenotypes of the same mutation of the ornithine transcarbamylase gene. X-linked inherited ornithine transcarbamylase deficiency is the most frequent urea cycle disorder. Many of the hemizygous males die during the neonatal period. Women, who are mostly healthy carriers, can also develop symptomatic hyperammonemia. Design Case study. Setting Intensive care unit and internal medicine unit at a university hospital. Patients The 20-yr-old female propositus was hospitalized for unexplained coma. She had a history of headaches, recurrent vomiting, specific anorexia for high-protein foods, and an acute neurologic crisis with alleged food poisoning 8 yrs before. The present episode began with psychiatric symptoms and seizures treated by diazepam and valproate. This unexplained coma, associated with respiratory alkalosis and major brain swelling on brain computed tomography scan, revealed hyperammonemia leading to the diagnosis of ornithine transcarbamylase deficiency. Continuous venovenous hemodiafiltration and treatment with sodium benzoate and phenylbutyrate improved the situation. However, the patient had some neurologic sequelae. DNA studies have disclosed a pathogenic mutation in the ornithine transcarbamylase gene of the patient, her mother, and her sister. For the mother, the disease was overlooked despite the onset of unusual headaches and neurologic signs that mimicked a cerebral tumor 12 yrs before. The 28-yr-old sister of the propositus has always been asymptomatic, even during pregnancy. Conclusions Diagnosis of urea cycle disorder should be considered in any patient with unexplained neurologic and psychiatric disorders with selective anorexia, even in adulthood. Unexplained coma with cerebral edema and respiratory alkalosis requires urgent measurement of ammonemia and metabolic work-up.


Cardiovascular Research | 2011

Cardiac anaplerosis in health and disease: food for thought

Christine Des Rosiers; F. Labarthe; Steven G. Lloyd; John C. Chatham

There has been a resurgence of interest for the field of cardiac metabolism catalysed by the increased need for new therapeutic targets for patients with heart failure. The primary focus of research in this area to date has been on the impact of substrate selection for oxidative energy metabolism; however, anaplerotic metabolism also has significant interest for its potential cardioprotective role. Anaplerosis refers to metabolic pathways that replenish the citric acid cycle intermediates, which are essential to energy metabolism; however, our understanding of the role and regulation of this process in the heart, particularly under pathophysiological conditions, is very limited. Therefore, the goal of this article is to provide a foundation for future directions of research on cardiac anaplerosis and heart disease. We include an overview of anaplerotic metabolism, a critical evaluation of current methods available for its quantitation in the intact heart, and a discussion of its role and regulation both in health and disease as it is currently understood based mostly on animal studies. We also consider genetic diseases affecting anaplerotic pathways in humans and acute intervention studies with anaplerotic substrates in the clinics. Finally, as future perspectives, we will share our thoughts about potential benefits and practical considerations on modalities of interventions targeting anaplerosis in heart disease, including heart failure.


PLOS ONE | 2013

Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic infantile pompe disease: a step towards improving the efficacy of ERT.

Suhrad G. Banugaria; Sean N. Prater; Trusha T. Patel; Stephanie DeArmey; Christie Milleson; Kathryn B. Sheets; Deeksha Bali; Catherine Rehder; Julian Raiman; Raymond A. Wang; F. Labarthe; Joel Charrow; Paul Harmatz; Pranesh Chakraborty; Amy S. Rosenberg; Priya S. Kishnani

Objective Although enzyme replacement therapy (ERT) is a highly effective therapy, CRIM-negative (CN) infantile Pompe disease (IPD) patients typically mount a strong immune response which abrogates the efficacy of ERT, resulting in clinical decline and death. This study was designed to demonstrate that immune tolerance induction (ITI) prevents or diminishes the development of antibody titers, resulting in a better clinical outcome compared to CN IPD patients treated with ERT monotherapy. Methods We evaluated the safety, efficacy and feasibility of a clinical algorithm designed to accurately identify CN IPD patients and minimize delays between CRIM status determination and initiation of an ITI regimen (combination of rituximab, methotrexate and IVIG) concurrent with ERT. Clinical and laboratory data including measures of efficacy analysis for response to ERT were analyzed and compared to CN IPD patients treated with ERT monotherapy. Results Seven CN IPD patients were identified and started on the ITI regimen concurrent with ERT. Median time from diagnosis of CN status to commencement of ERT and ITI was 0.5 months (range: 0.1–1.6 months). At baseline, all patients had significant cardiomyopathy and all but one required respiratory support. The ITI regimen was safely tolerated in all seven cases. Four patients never seroconverted and remained antibody-free. One patient died from respiratory failure. Two patients required another course of the ITI regimen. In addition to their clinical improvement, the antibody titers observed in these patients were much lower than those seen in ERT monotherapy treated CN patients. Conclusions The ITI regimen appears safe and efficacious and holds promise in altering the natural history of CN IPD by increasing ERT efficacy. An algorithm such as this substantiates the benefits of accelerated diagnosis and management of CN IPD patients, thus, further supporting the importance of early identification and treatment initiation with newborn screening for IPD.


Orphanet Journal of Rare Diseases | 2012

Miglustat therapy in the French cohort of paediatric patients with Niemann-Pick disease type C

Bénédicte Héron; Vassili Valayannopoulos; Julien Baruteau; Brigitte Chabrol; H. Ogier; Philippe Latour; Dries Dobbelaere; Didier Eyer; F. Labarthe; Hélène Maurey; Jean-Marie Cuisset; Thierry Billette de Villemeur; Frédéric Sedel; Marie T. Vanier

BackgroundNiemann-Pick disease type C (NP-C) is a rare neurovisceral lysosomal lipid storage disease characterized by progressive neurological deterioration. Published data on the use of miglustat in paediatric patients in clinical practice settings are limited. We report findings from a prospective open-label study in the French paediatric NP-C cohort.MethodsData on all paediatric NP-C patients treated with miglustat in France between October 2006 and December 2010 were compiled. All patients had a confirmed diagnosis of NP-C, and received miglustat therapy according to manufacturer’s recommendations. Pre-treatment and follow-up assessments were conducted according to a standardized protocol.ResultsTwenty children were enrolled; 19 had NPC1 gene mutations and 1 had NPC2 gene mutations. The median age at diagnosis was 1.5 years, and the median age at miglustat initiation was 6.0 years. Eight NPC1 patients had the early-infantile, eight had the late-infantile, and three had the juvenile-onset forms of NP-C. A history of hepatosplenomegaly and/or other cholestatic symptoms was recorded in all 8 early-infantile onset patients, 3/8 late-infantile patients, and 1/3 juvenile onset patients. Brain imaging indicated white matter abnormalities in most patients. The median (range) duration of miglustat therapy was 1.3 (0.6–2.3) years in early-infantile, 1.0 (0.8–5.0) year in late-infantile, and 1.0 (0.6–2.5) year in juvenile onset patients. NP-C disability scale scores indicated either stabilization or improvement of neurological manifestations in 1/8, 6/8, and 1/3 NPC1 patients in these subgroups, respectively. There were no correlations between brain imaging findings and disease course. Mild-to-moderate gastrointestinal disturbances were frequent during the first 3 months of miglustat therapy, but were easily managed with dietary modifications and/or anti-propulsive medication.ConclusionsMiglustat can improve or stabilize neurological manifestations in paediatric patients with the late-infantile and juvenile-onset forms of NP-C. Among early-infantile onset patients, a shorter delay between neurological disease onset and miglustat initiation was associated with an initial better therapeutic outcome in one patient, but miglustat did not seem to modify overall disease course in this subgroup. More experience is required with long-term miglustat therapy in early-infantile onset patients treated from the very beginning of neurological manifestations.


Journal of Molecular and Cellular Cardiology | 2011

Post-translational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart.

Benjamin Lauzier; Clémence Merlen; Fanny Vaillant; Janie McDuff; Bertrand Bouchard; Pauline C. Béguin; Vernon W. Dolinsky; Sylvain Foisy; Louis Villeneuve; F. Labarthe; Jason R. B. Dyck; Bruce G. Allen; Guy Charron; Christine Des Rosiers

CD36, a multifunctional protein, is involved in cardiac long chain fatty acid (LCFA) metabolism and in the etiology of heart diseases, yet the functional impact of Cd36 gene variants remains unclear. In 7-week-old spontaneously hypertensive rats (SHR), which, like humans, carry numerous mutations in Cd36, we tested the hypothesis that their restricted cardiac LCFA utilization occurs prior to hypertrophy due to defective CD36 post-translational modifications (PTM), as assessed by ex vivo perfusion of (13)C-labeled substrates and biochemical techniques. Compared to their controls, SHR hearts displayed a lower (i) contribution of LCFA to β-oxidation (-40%) and triglycerides (+2.8 folds), which was not explained by transcriptional changes or malonyl-CoA level, a recognized β-oxidation inhibitor, and (ii) membrane-associated CD36 protein level, but unchanged distribution. Other results demonstrate alterations in CD36 PTM in SHR hearts, specifically by N-glycosylation, and the importance of O-linked-β-N-acetylglucosamine for its membrane recruitment and role in LCFA use in the heart.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Prolonged QT interval and lipid alterations beyond β-oxidation in very long-chain acyl-CoA dehydrogenase null mouse hearts

Roselle Gélinas; Julie Thompson-Legault; Bertrand Bouchard; Caroline Daneault; Asmaa Mansour; Marc-Antoine Gillis; Guy Charron; Victor Gavino; F. Labarthe; Christine Des Rosiers

Patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency frequently present cardiomyopathy and heartbeat disorders. However, the underlying factors, which may be of cardiac or extra cardiac origins, remain to be elucidated. In this study, we tested for metabolic and functional alterations in the heart from 3- and 7-mo-old VLCAD null mice and their littermate counterparts, using validated experimental paradigms, namely, 1) ex vivo perfusion in working mode, with concomitant evaluation of myocardial contractility and metabolic fluxes using (13)C-labeled substrates under various conditions; as well as 2) in vivo targeted lipidomics, gene expression analysis as well as electrocardiogram monitoring by telemetry in mice fed various diets. Unexpectedly, when perfused ex vivo, working VLCAD null mouse hearts maintained values similar to those of the controls for functional parameters and for the contribution of exogenous palmitate to β-oxidation (energy production), even at high palmitate concentration (1 mM) and increased energy demand (with 1 μM epinephrine) or after fasting. However, in vivo, these hearts displayed a prolonged rate-corrected QT (QTc) interval under all conditions examined, as well as the following lipid alterations: 1) age- and condition-dependent accumulation of triglycerides, and 2) 20% lower docosahexaenoic acid (an omega-3 polyunsaturated fatty acid) in membrane phospholipids. The latter was independent of liver but affected by feeding a diet enriched in saturated fat (exacerbated) or fish oil (attenuated). Our finding of a longer QTc interval in VLCAD null mice appears to be most relevant given that such condition increases the risk of sudden cardiac death.


Molecular Genetics and Metabolism | 2012

Barth syndrome in a female patient

Laure Cosson; Annick Toutain; Gilles Simard; Willem Kulik; Gabor Matyas; Agnès Guichet; Hélène Blasco; Zoha Maakaroun-Vermesse; M.C. Vaillant; Cédric Le Caignec; A. Chantepie; F. Labarthe

BACKGROUND Barth syndrome (BTHS) is an X-linked recessive disorder characterized by cardiomyopathy, skeletal myopathy and cyclic neutropenia in male patients. It is caused by mutations in the TAZ gene coding for the tafazzin, a protein involved in the remodeling of cardiolipin. Loss of cardiolipin in the inner mitochondrial membrane results in respiratory chain dysfunction. No specific symptom has been identified in female carriers. CASE REPORT We report the first case of BTHS confirmed by TAZ gene analysis in a female patient. This girl experienced severe heart failure at 1-month of age. Echocardiography diagnosed dilated-hypokinetic and hypertrophic cardiomyopathy with noncompaction of the left ventricle. Initial metabolic screening was normal, except for a cyclic neutropenia. Respiratory chain analysis performed on skin fibroblasts revealed a decreased activity of complexes I, III and IV. Screening on a bloodspot showed abnormal monolysocardiolipin:cardiolipin ratio, later confirmed on cultured fibroblasts, indicative of BTHS. Genetic analyses finally confirmed the diagnosis of BTHS, by showing a large intragenic deletion of exons 1 through 5 in the TAZ gene. Cytogenetic analysis showed mosaicism for monosomy X and for a ring X chromosome with a large deletion of the long arm including the Xq28 region. The girl presented recurrent episodes of severe acute heart failure, progressive muscle weakness, and had a fatal septic shock at 3 years. CONCLUSION This case highlights that the diagnosis of BTHS should also be suspected in female patients presenting a phenotype similar to affected boys. In these cases, analysis of the monolysocardiolipin:cardiolipin ratio in bloodspots is a rapid and sensitive screening tool for BTHS. However clinical expression in a carrier female requires hemizygosity for the mutated allele of the TAZ gene, which supposes a rearrangement of the TAZ gene region on the other X chromosome.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Alterations in carbohydrate metabolism and its regulation in PPARα null mouse hearts

Roselle Gélinas; F. Labarthe; Bertrand Bouchard; Janie Mc Duff; Guy Charron; Martin E. Young; Christine Des Rosiers

Although a shift from fatty acids (FAs) to carbohydrates (CHOs) is considered beneficial for the diseased heart, it is unclear why subjects with FA beta-oxidation defects are prone to cardiac decompensation under stress conditions. The present study investigated potential alterations in the myocardial utilization of CHOs for energy production and anaplerosis in 12-wk-old peroxisome proliferator-activating receptor-alpha (PPARalpha) null mice (a model of FA beta-oxidation defects). Carbon-13 methodology was used to assess substrate flux through energy-yielding pathways in hearts perfused ex vivo at two workloads with a physiological substrate mixture mimicking the fed state, and real-time RT-quantitative polymerase chain reaction was used to document the expression of selected metabolic genes. When compared with that from control C57BL/6 mice, isolated working hearts from PPARalpha null mice displayed an impaired capacity to withstand a rise in preload (mimicking an increased venous return as it occurs during exercise) as reflected by a 20% decline in the aortic flow rate. At the metabolic level, beyond the expected shift from FA (5-fold down) to CHO (1.5-fold up; P < 0.001) at both preloads, PPARalpha null hearts also displayed 1) a significantly greater contribution of exogenous lactate and glucose and/or glycogen (2-fold up) to endogenous pyruvate formation, whereas that of exogenous pyruvate remained unchanged and 2) marginal alterations in citric acid cycle-related parameters. The lactate production rate was the only measured parameter that was affected differently by preloads in control and PPARalpha null mouse hearts, suggesting a restricted reserve for the latter hearts to enhance glycolysis when the energy demand is increased. Alterations in the expression of some glycolysis-related genes suggest potential mechanisms involved in this defective CHO metabolism. Collectively, our data highlight the importance of metabolic alterations in CHO metabolism associated with FA oxidation defects as a factor that may predispose the heart to decompensation under stress conditions even in the fed state.


Cell Reports | 2015

A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome

Julie Thompson Legault; Laura Strittmatter; Jessica Tardif; Rohit Sharma; Vanessa Tremblay-Vaillancourt; Chantale Aubut; Gabrielle Boucher; Clary B. Clish; Denis Cyr; Caroline Daneault; Paula J. Waters; Azadeh Aliskashani; Bruce G. Allen; Claudine Beauchamp; Chantal Bémeur; Yan Burelle; Guy Charron; Lise Coderre; Christine Des Rosiers; Sonia Deschênes; F. Labarthe; Jeannine Landry; Catherine Laprise; Geneviève Lavallée; Pierre Lavoie; Bruno Maranda; Charles Morin; Yvette Mukaneza; Tamiko Nishimura; John D. Rioux

SUMMARY A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines), as well as unexpected markers of cardiometabolic risk (insulin and adiponectin), amino acid catabolism linked to NADH status (α-hydroxybutyrate), and NAD+ biosynthesis (kynurenine and 3-hydroxyanthranilic acid). Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases.


PLOS ONE | 2012

Long-Chain Acylcarnitines Regulate the hERG Channel

Fabio Ferro; Aude Ouillé; Truong-An Tran; Pierre Fontanaud; Patrick Bois; Dominique Babuty; F. Labarthe; Jean-Yves Le Guennec

Background and purpose In some pathological conditions carnitine concentration is high while in othersitis low.In bothcases,cardiac arrhythmiascan occur and lead to sudden cardiac death. It has been proposed that in ischaemia, acylcarnitine (acyl-CAR), but not carnitine, is involved in arrhythmiasthrough modulation of ionic currents. We studied the effects of acyl-CARs on hERG, KIR2.1 and Kv7.1/minKchannels (channels responsible for IKR, IK1 and IKS respectively). Experimental approach HEK293 cells stably expressing hERG, KIR2.1 or Kv7.1/minK were studied using the patch clamp technique. Free carnitine (CAR) and acyl-CAR derivatives from medium- (C8 and C10) and long-chain (C16 and C18∶1) fatty acids were applied intra- and extracellularly at different concentrations. Forstudies onhERG, C16 and C18∶1 free fatty acid were also used. Key results Extracellular long-chain (LCAC), but not medium-chain, acyl-CAR,induced an increase of IhERG amplitude associated with a dose-dependent speeding of deactivation kinetics. They had no effect on KIR2.1 or Kv7.1/minK currents.Computer simulations of these effects wereconsistent with changes in action potential profile. Conclusions and applications Extracellular LCAC tonically regulates IhERG amplitude and kineticsunder physiological conditions. This modulation maycontribute tothe changes in action potential duration thatprecede cardiac arrhythmias in ischaemia, diabetes and primary systemic carnitine deficiency.

Collaboration


Dive into the F. Labarthe's collaboration.

Top Co-Authors

Avatar

M. Tardieu

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Chantepie

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

F. Maillot

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Hélène Blasco

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Charron

Montreal Heart Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Lefort

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge