Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Legrand is active.

Publication


Featured researches published by F. Legrand.


international conference on plasma science | 2006

EU megawatt-class 140 GHZ CW gyrotron

M. Thumm; S. Alberti; A. Arnold; P. Brand; H. Braune; G. Dammertz; V. Erckmann; G. Gantenbein; E. Giguet; R. Heidinger; J.-P. Hogge; S. Illy; W. Kasparek; H. P. Laqua; F. Legrand; W. Leonhardt; C. Lievinlievin; G. Michel; G. Neffe; B. Piosczyk; M. Schmid; K. Schworer; M. Q. Tran

The first series tube of the gyrotrons for the 10-MW electron cyclotron resonance heating system of the stellarator W7-X was tested at Forschungszentrum Karlsruhe (FZK) and yielded a total output power of 0.98 MW, with an efficiency of 31% (without a single-stage depressed collector) in short-pulse operation and of 0.92 MW in pulses of 180 s (efficiency of almost 45% at a depression voltage of 29 kV). The Gaussian mode output power was 0.91 MW. The pulselength at full power (1 MW) is limited at FZK by the available power supply. At a reduced electron beam current, it is possible to operate at longer pulselengths. At an output power of 0.57 MW (electron beam current of 29 A), the pulselength was increased to 1893 s. There was no physical reason for a limitation of this pulse: The pressure increase during the pulse was less than a factor of two and ended up at a very low value in the 10-9 mbar range. The tube was delivered to Max-Planck-Institut fuumlr Plasmaphysik Greifswald for tests at full power and up to 30-min pulselength. The Gaussian mode RF output power, measured in a calorimetric load after a 25-m-long quasi-optical transmission line (seven mirrors), was 0.87 MW at a total output power of 0.92 MW in 30-min pulses. Again, no indications for a limitation in pulselength were found. The second series tube was tested in short-pulse operation and showed a strange behavior concerning a mode hopping which has not yet been understood. The third series gyrotron delivers up to now 0.65 MW at a pulse duration of 180 s. Preliminary operation of the prototype tube as a two-frequency gyrotron delivered 0.41 MW in 10-s pulses at 103.8 GHz (TE21,6 mode)


international conference on plasma science | 2005

High-power gyrotron development at Forschungszentrum Karlsruhe for fusion applications

G. Dammertz; S. Alberti; D. Bariou; P. Brand; H. Braune; Volker Erckmann; O. Dumbrajs; G. Gantenbein; E. Giguet; Roland Heidinger; Jean-Philipp Hogge; S. Illy; Jinbo Jin; W. Kasparek; K. Koppenburg; Heinrich Laqua; F. Legrand; W. Leonhardt; C. Lievin; G. Michel; G. Neffe; B. Piosczyk; O. Prinz; T. Rzesnicki; M. Schmid; M. Thumm; M. Q. Tran; X. Yang; I. Yovchev

In the first part of this paper, the status of the 140-GHz continuously operated gyrotrons with an output power of 1 MW for the stellarator Wendelstein 7-X will be described. With the first series tube, an output power of 1000 kW has been achieved in short pulse operation (milliseconds) with an electron beam current of 40 A, and of 1150 kW at 50 A. With a pulse length of 3 min limited by the available high-voltage (HV) power supply, an output power of 920 kW at an electron beam current of about 40 A with an efficiency of 45% and a mode purity of 97.5% has been obtained. At a reduced beam current of 29 A, an output power of 570 kW was measured with a pulse length of 1893 s without significant increase in tube pressure. The energy content of this pulse is almost 1.1 GJ. For the next fusion plasma device, International Thermonuclear Experimental Reactor (ITER), gyrotrons with a higher output power of about 2 MW are desirable. In short-pulse experiments, the feasibility of the fabrication of coaxial cavity gyrotrons with an output power up to 2-MW, continuous wave (CW), has been demonstrated, and the information necessary for a technical design has been obtained. The development of a long-pulse 2-MW coaxial cavity gyrotron started within a European cooperation. In parallel to the design and fabrication of an industrial prototype gyrotron, a short-pulse preprototype gyrotron has been operated to verify the design of critical components. An output power of 1.2 MW with an efficiency of 20% has been achieved. The development of frequency tunable gyrotrons operating in the range from 105 to 140 GHz for stabilization of current driven plasma instabilities in fusion plasma devices (neoclassical tearing modes) is another task in the development of gyrotrons at the Forschungszentrum Karlsruhe.


IEEE Transactions on Electron Devices | 2005

Development of multimegawatt gyrotrons for fusion plasma heating and current drive

G. Dammertz; S. Alberti; D. Bariou; E. Borie; P. Brand; H. Braune; Volker Erckmann; G. Gantenbein; E. Giguet; Roland Heidinger; Jean-Philippe Hogge; S. Illy; J. Jin; W. Kasparek; K. Koppenburg; Heinrich Laqua; F. Legrand; W. Leonhardt; C. Lievin; Roland Magne; G. Michel; G. Müller; G. Neffe; B. Piosczyk; T. Rzesnicki; M. Schmid; M. Thumm; Minhquang Tran; X. Yang

High frequency gyrotrons with high output power are mainly used for microwave heating and current drive in plasmas for thermonuclear fusion experiments. Electron cyclotron resonance heating (ECRH) has proven to be an important tool for plasma devices, especially for stellarators, as it provides both net current free plasma start up from the neutral gas and efficient plasma heating. The development of high power gyrotrons (118 GHz, 140 GHz and 170 GHz) in continuous wave operation (CW) has been in progress for several years in a joint collaboration between different European research institutes and industrial partners. This paper describes the work of the Forschungszentrum Karlsruhe for the development of conventional-cavity 1-MW CW gyrotrons, coaxial cavity 2-MW short-pulse gyrotrons and a frequency step-tunable gyrotron in the frequency range between 105-140 GHz.


IEEE Transactions on Plasma Science | 2014

From Series Production of Gyrotrons for W7-X Toward EU-1 MW Gyrotrons for ITER

John Jelonnek; F. Albajar; S. Alberti; Konstantinos A. Avramidis; P. Benin; T. Bonicelli; F. Cismondi; Volker Erckmann; Gerd Gantenbein; Klaus Hesch; Jean-Philippe Hogge; S. Illy; Zisis C. Ioannidis; J. Jin; Heinrich Laqua; George P. Latsas; F. Legrand; G. Michel; Ioannis Gr. Pagonakis; Bernhard Piosczyk; Y. Rozier; T. Rzesnicki; Ioannis G. Tigelis; M. Thumm; M. Q. Tran; John L. Vomvoridis

Europe is devoting significant joint efforts to develop and to manufacture MW-level gyrotrons for electron cyclotron heating and current drive of future plasma experiments. The two most important ones are the stellarator Wendelstein W7-X at Greifswald and the Tokamak ITER at Cadarache. While the series production of the 140 GHz, 1 MW, CW gyrotrons for the 10-MW electron cyclotron resonance heating system of stellarator W7-X is proceeding, the European GYrotron Consortium is presently developing the EU-1 MW, 170 GHz, CW gyrotron for ITER. The initial design had already been initiated in 2007, as a risk mitigation measure during the development of the advanced ITER EU-2-MW coaxial-cavity gyrotron. The target of the ITER EU-1-MW conventional-cavity design is to benefit as much as possible from the experiences made during the development and series production of the W7-X gyrotron and of the experiences gained from the earlier EU-2-MW coaxial-cavity gyrotron design. Hence, the similarity of the construction will be made visible in this paper. During 2012, the scientific design of the ITER EU-1-MW gyrotron components has been finalized. In collaboration with the industrial partner Thales electron devices, Vélizy, France, the industrial design of the technological parts of the gyrotron is being completed. A short-pulse prototype is under development to support the design of the CW prototype tube. The technological path toward the EU ITER-1 MW gyrotron and the final design will be presented.


symposium on fusion technology | 2003

Power modulation capabilities of the 140 GHz/1 MW gyrotron for the stellarator Wendelstein 7-X

G. Dammertz; S. Alberti; D. Fasel; E. Giguet; K. Koppenburg; M. Kuntze; F. Legrand; W. Leonhardt; C. Lievin; G. Müller; G. Neffe; B. Piosczyk; M. Schmid; A.B. Sterk; M. Thumm; M. Q. Tran; A.G.A. Verhoeven

In current tokamaks and, in particular, in future larger devices such as ITER, the control of neo-classical tearing modes (NTM) is essential for achieving high performance in terms of the beta limit. A commonly used scheme for NTM stabilization consists in driving a helical current at the resonance surface of interest with electron-cyclotron-current-drive. Depending on the ratio between the magnetic island size and the RF beam width, complete stabilization of the NTM will only be achieved with deep RF power modulation in phase with the mode. In the frame of the European development program of high power sources for ECRH applications between Forschungszentrum Karlsruhe, IPP Garching/Greifswald, EPFL Lausanne, IPF Stuttgart, CEA Cadarache and Thales Electron Devices, the modulation capabilities of the 140 GHz/1 MW gyrotron have been experimentally investigated. RF-power modulation depths higher than 80% at a frequency of 50 kHz with cathode modulation and 1.5 kHz with depression voltage modulation have been obtained. The limitations in frequency were given by the corresponding power supplies and not by the gyrotron itself. Detailed analysis of the collector loading with respect to the modulation scheme will be presented and the intrinsic gyrotron limitations for long-pulse operation with deep modulation will be discussed


international conference on infrared, millimeter, and terahertz waves | 2005

Experimental results on the 140 GHz, 1 MW, CW gyrotrons for the stellarator W7-X

G. Dammertz; A. Arnold; E. Borie; S. Illy; S. Alberti; D. Bariou; P. Brand; H. Braune; V. Erckmann; G. Gantenbein; E. Giguet; R. Heidinger; J.-P. Hogge; W. Kasparek; K. Koppenburg; H. P. Laqua; F. Legrand; W. Leonhardt; C. Lievin; G. Michel; G. Müller; G. Neffe; B. Piosczyk; M. Schmid; M. Thumm; M.Q. Tran

The development of high power gyrotrons (118 GHz, 140 GHz) in continuous wave operation (CW) has been in progress for several years in a joint collaboration between different European research institutes and industrial partners. In this frame, two 140 GHz prototype gyrotrons for CW operation had been constructed and tested at the Forschungszentrum Karlsruhe. According to the results of the prototypes, seven 140 GHz CW gyrotrons were ordered. The first tube was operated at the Forschungszentrum Karlsruhe. A power of 950 kW at efficiency of 43 % (with energy recovery) could be obtained for pulse lengths of 180 s (limited by the available high-voltage power supply). A 30 minute pulse was performed with an output power of 540 kW. During this pulse almost no decrease in performance was found, especially the tube pressure only increased in the range of 10/sup -9/ mbar.


international conference on infrared, millimeter, and terahertz waves | 2007

Experimental results on high-power gyrotrons for the stellarator W7-X

G. Gantenbein; G. Dammertz; V. Erckmann; S. Illy; W. Kasparek; C. Lechte; F. Legrand; G. Lietaer; C. Lievin; B. Piosczyk; M. Schmid; M. Thumm

This paper reports on the status of the 140 GHz, 1 MW, CW series gyrotrons for the stellarator W7-X. High power experiments have been performed at pulse length of up to 1800 s and an output power of up to 1.05 MW.


international vacuum electronics conference | 2016

Manufacturing and tests of the European 1 MW, 170 GHz CW gyrotron prototype for ITER

Y. Rozier; Ferran Albajar; S. Alberti; Konstantinos A. Avramidis; Tullio Bonicelli; F. Cismondi; Pierre-Etienne Frigot; Gerd Gantenbein; V. Hermann; Jean-Philippe Hogge; John Jelonnek; Jianbo Jin; F. Legrand; Gerald Lietaer; Ioannis Gr. Pagonakis; Tomasz Rzesnicki; M. Thumm

An industrial 1 MW, 170 GHz continuous-wave (CW) gyrotron prototype has been manufactured in 2015 at Thales. The physical design is provided by the European GYrotron Consortium (EGYC) and is supported by the construction and the measurement of a modular short-pulse (SP) prototype. In this presentation, the latest experimental results are discussed, with respect to the previous results acquired for the modular SP prototype gyrotron.


international vacuum electronics conference | 2015

From W7-X towards ITER and beyond: Status and progress in EU fusion gyrotron developments

John Jelonnek; G. Aiello; Konstantinos A. Avramidis; J. Franck; Gerd Gantenbein; G. Grossetti; Klaus Hesch; S. Illy; J. Jin; P. Kalaria; Ioannis Gr. Pagonakis; T. Rzesnicki; S. Ruess; A. Samartsev; T. Scherer; D. Strauss; Chuanren Wu; M. Thumm; S. Alberti; F. Braunmueller; J. Genoud; Jean-Philippe Hogge; Christian Schlatter; T. M. Tran; M. Q. Tran; Ioannis G. Chelis; John L. Vomvoridis; Zisis C. Ioannidis; George P. Latsas; Ioannis G. Tigelis

In Europe, significant progress in gyrotron research, development and manufacturing has been made in 2014, starting from the successful continuation of the 1 MW, 140 GHz gyrotron production for the stellarator Wendelstein 7-X (W7-X) at Greifswald, Germany and the accelerated development of the EU 1 MW, 170 GHz conventional cavity gyrotron for the ITER tokamak at Cadarache, France. Based on that, a physical design activity was started which shall lead to a dual frequency gyrotron for TCV, Lausanne, Switzerland. Within the European fusion development consortium (EUROfusion), advanced gyrotron research and development has started towards a future gyrotron design which shall fulfil the needs of DEMO, the nuclear fusion demonstration power plant that will follow ITER. Within that research and development, the development of advanced design tools, components, and proper test environment is progressing as well. A comprehensive view over the status and prospects of the different development lines shall be presented.


international conference on plasma science | 2008

Recent results in high power gyrotron development for W7-X at FZK

G. Gantenbein; H. Braune; G. Dammertz; V. Erckmann; S. Ely; S. Kern; W. Kasparek; H. P. Laqua; C. Lechte; F. Legrand; W. Leonhardt; C. Lievin; G. Michele; B. Piosczyk; O. Prinz; M. Schmid; M. Thumm

Summary form only given. A 10 MW ECRH system is currently under construction for the stellarator W7-X which will be built up and operated by IPP in Greifswald, Germany. The RF power will be provided by 10 gyrotrons. A European collaboration has been established to develop and build the 10 gyrotrons each with an output power of 1 MW for continuous wave (CW) operation. Nine gyrotrons are being manufactured by Thales Electron Devices (TED), Velizy, France, one gyrotron was produced by CPI, Palo Alto, CA and has passed the acceptance tests at IPP. The acceptance tests of the TED gyrotrons are performed at the test stand at FZK and on site at IPP. The first series tube yielded a total output power of 0.98 MW, with an efficiency of 31 % (with non-depressed collector) in short pulse operation and of 0.92 MW in pulses of 1800 s (efficiency of almost 45 % at a depression voltage of 29 kV). The Gaussian mode output power was 0.91 MW. The RF power, measured in a calorimetric load at the end of a 25 m long quasi-optical transmission line with seven mirrors, was 0.87 MW. In this contribution topical results of the series gyrotrons will be reported.

Collaboration


Dive into the F. Legrand's collaboration.

Top Co-Authors

Avatar

M. Thumm

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Illy

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Schmid

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gerd Gantenbein

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John Jelonnek

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Konstantinos A. Avramidis

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Jin

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zisis C. Ioannidis

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

T. Rzesnicki

European Atomic Energy Community

View shared research outputs
Top Co-Authors

Avatar

M.Q. Tran

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge