F Lombardi
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F Lombardi.
Waste Management | 1998
F Lombardi; T. Mangialardi; L. Piga; P. Sirini
Abstract A fly ash coming from a hospital solid wastes incineration plant was solidified/stabilized in cementitious matrices. Owing to the high chloride, sulphate and alkali content and the low Si, AI and Fe values this fly ash cannot be used in the formulation of blended cement. The objectives of solidification stabilization treatment were therefore to reduce the leachability of the heavy metals present in this material so as to permit its disposal in a sanitary landfill requiring only a low degree of environmental protection. The mechanical properties and leaching behaviour of solidified products were investigated. Fly ash and Portland Cement mixtures in ratios varying between 0.25 and 1.5 were tested for unconfined compressive strength after curing in tap water at 20°C. Leaching tests were performed both on fly ash and solidified/stabilized products using an acetic acid standard leaching test and a modified version thereof (dynamic leaching test).
Waste Management | 2012
S Rocca; André van Zomeren; Giulia Costa; Joris J. Dijkstra; Rob N. J. Comans; F Lombardi
Thermal treatment of refuse derived fuel (RDF) in waste-to-energy (WtE) plants is considered a promising solution to reduce waste volumes for disposal, while improving material and energy recovery from waste. Incineration is commonly applied for the energetic valorisation of RDF, although RDF gasification has also gained acceptance in recent years. In this study we focused on the environmental properties of bottom ash (BA) from an RDF incineration (RDF-I, operating temperature 850-1000°C) and a RDF gasification plant (RDF-G, operating temperature 1200-1400°C), by evaluating the total composition, mineralogy, buffering capacity, leaching behaviour (both at the materials own pH and as a function of pH) of both types of slag. In addition, buffering capacity results and pH-dependence leaching concentrations of major components obtained for both types of BA were analysed by geochemical modelling. Experimental results showed that the total content of major components for the two types of BA was fairly similar and possibly related to the characteristics of the RDF feedstock. However, significant differences in the contents of trace metals and salts were observed for the two BA samples as a result of the different operating conditions (i.e. temperature) adopted by the two RDF thermal treatment plants. Mineralogy analysis showed in fact that the RDF-I slag consisted of an assemblage of several crystalline phases while the RDF-G slag was mainly made up by amorphous glassy phases. The leached concentrations of major components (e.g. Ca, Si) at the natural pH of each type of slag did not reflect their total contents as a result of the partial solubility of the minerals in which these components were chemically bound. In addition, comparison of total contents with leached concentrations of minor elements (e.g. Pb, Cu) showed no obvious relationship for the two types of BA. According to the compliance leaching test results, the RDF-G BA would meet the limits of the Italian legislation for reuse and the European acceptance criteria for inert waste landfilling. RDF-I BA instead would meet the European acceptance criteria for non hazardous waste landfilling. A new geochemical modelling approach was followed in order to predict the leaching behaviour of major components and the pH buffering capacity of the two types of slags on the basis of independent mineralogical information obtained by XRD analysis and the bulk composition of the slag. It was found that the combined use of data regarding the mineralogical characterization and the buffering capacity of the slag material can provide an independent estimate of both the identity and the amount of minerals that contribute to the leaching process. This new modelling approach suggests that only a limited amount of the mineral phases that control the pH, buffering capacity and major component leaching from the solid samples is available for leaching, at least on the time scale of the applied standard leaching tests. As such, the presented approach can contribute to gain insights for the identification of the types and amounts of minerals that control the leaching properties and pH buffering capacity of solid residues such as RDF incineration and gasification bottom ash.
Chemosphere | 2001
Sarantuyaa Zandaryaa; Renato Gavasci; F Lombardi; Antonella Fiore
An experimental study of the selective non-catalytic reduction (SNCR) process was carried out to determine the efficiency of NOx removal and NH3 mass balance, the NOx reducing reagent used. Experimental tests were conducted on a full-scale SNCR system installed in a hospital waste incineration plant. Anhydrous NH3 was injected at the boiler entrance for NOx removal. Ammonia was analyzed after each flue-gas treatment unit in order to establish its mass balance and NH3 slip in the stack gas was monitored as well. The effective fraction of NH3 for the thermal NOx reduction was calculated from measured values of injected and residual NH3. Results show that a NOx reduction efficiency in the range of 46.7-76.7% is possible at a NH3/NO molar ratio of 0.9-1.5. The fraction of NH3 used in NOx removal was found to decrease with rising NH3/NO molar ratio. The NH3 slip in the stack gas was very low, below permitted limits, even at the higher NH3 dosages used. No direct correlation was found between the NH3/NO molar ratio and the NH3 slip in the stack gas since the major part of the residual NH3 was converted into ammonium salts in the dry scrubbing reactor and subsequently collected in the fabric filter. Moreover, another fraction of NH3 was dissolved in the scrubbing liquor.
Reviews in Environmental Science and Bio\/technology | 2012
M. C. Di Lonardo; F Lombardi; Renato Gavasci
Mechanical–biological treatment (MBT) plants treat municipal solid waste (MSW), residual after source separation, with the aim to minimize the environmental impact associated with the residues landfilling and to add values to waste outflows for a potential utilization. MBT consists in a combination of mechanical processes (shredding, size, density and magnetic separation, densification, etc.) and biological treatment (aerobic or anaerobic degradation) of the organic fraction mechanically separated. In this work a review regarding the MBT input and outputs characterization is presented with the aim to evaluate the quality of them and the effectiveness of MBT plants to produce materials that can be utilized for material/energy recovery. A strong variability of the different flows characteristics, mainly due to the heterogeneity of the input MSW and to the different configurations of processing units employed in MBT plants, was highlighted. Therefore most suitable end-uses or disposal for the MBT outputs are site-specific and should be related to prior detailed characterizations of the materials able to identify specific quality classes defined by proper technical standards.
Waste Management | 2013
S Rocca; André van Zomeren; Giulia Costa; Joris J. Dijkstra; Rob N.J. Comans; F Lombardi
The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550°C was due to moisture evaporation and dehydration of Ca(OH)(2) and hydrocalumite. Results for the HW-I BA showed that LOI at 550°C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO(3) around 700°C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO(3) contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)(2) in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650°C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2003
G. Farabegoli; Renato Gavasci; F Lombardi; F. Romani
Abstract The present paper shows the results obtained through an experimental work performed at the wastewater treatment plant of Rome, aimed at studying the performances of a tertiary filter regarding combined removal of suspended solids, COD, and nitrates. The up-flow sand filter was fed by the effluent coming from the secondary settling tank of the plant. The filter bed height was of 80 cm of silica sand. After a start up period, a study of particulate and soluble COD removal process was made, to establish the need of methanol in the denitrification process. Total COD removal efficiency was 60% on average, 55% due by soluble COD removal and 5% by particulate one. In the last phase of the experimental activity methanol was fed as carbon source, sodium sulfite was supplied to produce anoxic environment within the filter and the denitrification efficiency was studied. Nitrates removal rates after an acclimation period of 10 days increased up to 60%, with an effluent NO3-N of 8 mg/L. Denitrification rate was 2.4 kg/m3 d for water temperatures of 25°C. Regarding methanol demand and biologic kinetics, the biomass yield coefficient was 0.3 kgCOD-X/kgme. Consequently 2.7 kg of methanol was required per kilogram of denitrified nitrogen.
Waste Management & Research | 2013
F Lombardi; Emanuele Lategano; Stefano Cordiner; Vincenzo Torretta
This article presents a tool based on a simplified model developed for the combustion processes in a rotary kiln incinerator (slightly inclined rotating primary combustion chamber). The model was developed with the aim of supporting the design phase of the incinerator combustion chamber and, at the same time, of investigating possible technical changes in existing plants in order to optimise the combustion process and the dimension of the rotary kiln (length, diameter) as a function of the characteristics of the fed waste. The tool has been applied and the obtained results compared with a real incineration plant operating on healthcare waste located in Rome (Italy). The mass and thermal balances were taken into account, together with kinetic parameters for the combustion of the specific waste stream. The mass balance considered only the major mass components (carbon, hydrogen, oxygen, nitrogen and sulphur). The measured external temperatures appear to be in good agreement with the simulated results. A sensitivity analysis of the plant under different operating conditions was carried out using different input flow rates and excess air ratios, and an assessment was made of the refractory and insulator properties of the kiln’s behaviour. Some of the simulated results were used during the periodical maintenance to improve the refractory characteristics in order to reduce the fret and corrosion process.
Waste Management | 2015
Sara Pantini; Iason Verginelli; F Lombardi
The leaching behavior of wastes coming out from Mechanical Biological Treatment (MBT) plants is still poorly investigated in literature. This work presents an attempt to provide a deeper insight about the contaminants release from this type of waste. To this end, results of several batch and up-flow percolation tests, carried out on different biologically treated waste samples collected from an Italian MBT plant, are reported. The obtained results showed that, despite MBT wastes are characterized by relatively high heavy metals content, only a limited amount was actually soluble and thus bioavailable. Namely, the release percentage was generally lower than 5% of the total content with the only exception of dissolved organic carbon (DOC), Zn, Ni and Co with release percentages up to 20%. The information provided by the different tests also allowed to highlight some key factors governing the kinetics release of DOC and metals from this type of material. In particular, results of up-flow column percolation tests showed that metals such as Cr, Mg, Ni and Zn followed essentially the leaching trend of DOC suggesting that these elements were mainly released as organo-compounds. Actually, a strong linear correlation (R(2) > 0.8) between DOC and metals concentration in eluates was observed, especially for Cr, Ni and Zn (R(2)>0.94). Thus, combining the results of batch and up-flow column percolation tests, partition coefficients between DOC and metals concentration were derived. These data, coupled with a simplified screening model for DOC release, allowed to get a very good prediction of metal release during the different column tests. Finally, combining the experimental data with a simplified model provided some useful indications for the evaluation of long-term emissions from this type of waste in landfill disposal scenarios.
Waste Management | 2016
Martina Di Gianfilippo; Giulia Costa; Sara Pantini; Elisa Allegrini; F Lombardi; Thomas Fruergaard Astrup
The main characteristics and environmental properties of the bottom ash (BA) generated from thermal treatment of waste may vary significantly depending on the type of waste and thermal technology employed. Thus, to ensure that the strategies selected for the management of these residues do not cause adverse environmental impacts, the specific properties of BA, in particular its leaching behavior, should be taken into account. This study focuses on the evaluation of potential environmental impacts associated with two different management options for BA from thermal treatment of Refuse Derived Fuel (RDF): landfilling and recycling as a filler for road sub bases. Two types of thermal treatment were considered: incineration and gasification. Potential environmental impacts were evaluated by life-cycle assessment (LCA) using the EASETECH model. Both non-toxicity related impact categories (i.e. global warming and mineral abiotic resource depletion) and toxic impact categories (i.e. human toxicity and ecotoxicity) were assessed. The system boundaries included BA transport from the incineration/gasification plants to the landfills and road construction sites, leaching of potentially toxic metals from the BA, the avoided extraction, crushing, transport and leaching of virgin raw materials for the road scenarios, and material and energy consumption for the construction of the landfills. To provide a quantitative assessment of the leaching properties of the two types of BA, experimental leaching data were used to estimate the potential release from each of the two types of residues. Specific attention was placed on the sensitivity of leaching properties and the determination of emissions by leaching, including: leaching data selection, material properties and assumptions related to emission modeling. The LCA results showed that for both types of BA, landfilling was associated with the highest environmental impacts in the non-toxicity related categories. For the toxicity related categories, the two types of residues behaved differently. For incineration BA the contribution of metal leaching to the total impacts had a dominant role, with the highest environmental loads resulting for the road scenario. For the gasification BA, the opposite result was obtained, due to the lower release of contaminants observed for this material compared to incineration BA. Based on the results of this study, it may be concluded that, depending on the type of BA considered, its leaching behavior may significantly affect the results of a LCA regarding its management strategies.
Waste Management | 2016
Maria Chiara Di Lonardo; Maurizio Franzese; Giulia Costa; Renato Gavasci; F Lombardi
This work assessed the quality in terms of solid recovered fuel (SRF) definitions of the dry light flow (until now indicated as refuse derived fuel, RDF), heavy rejects and stabilisation rejects, produced by two mechanical biological treatment plants of Rome (Italy). SRF classification and specifications were evaluated first on the basis of RDF historical characterisation methods and data and then applying the sampling and analytical methods laid down by the recently issued SRF standards. The results showed that the dry light flow presented a worst SRF class in terms of net calorific value applying the new methods compared to that obtained from RDF historical data (4 instead of 3). This lead to incompliance with end of waste criteria established by Italian legislation for SRF use as co-fuel in cement kilns and power plants. Furthermore, the metal contents of the dry light flow obtained applying SRF current methods proved to be considerably higher (although still meeting SRF specifications) compared to those resulting from historical data retrieved with RDF standard methods. These differences were not related to a decrease in the quality of the dry light flow produced in the mechanical-biological treatment plants but rather to the different sampling procedures set by the former RDF and current SRF standards. In particular, the shredding of the sample before quartering established by the latter methods ensures that also the finest waste fractions, characterised by higher moisture and metal contents, are included in the sample to be analysed, therefore affecting the composition and net calorific value of the waste. As for the reject flows, on the basis of their SRF classification and specification parameters, it was found that combined with the dry light flow they may present similar if not the same class codes as the latter alone, thus indicating that these material flows could be also treated in combustion plants instead of landfilled. In conclusion, the introduction of SRF definitions, classification and specification procedures, while not necessarily leading to an upgrade of the waste as co-fuel in cement kilns and power plants, may anyhow provide new possibilities for energy recovery from waste by increasing the types of mechanically treated waste flows that may be thermally treated.