Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Moia is active.

Publication


Featured researches published by F. Moia.


Energy and Environmental Science | 2012

The effect of selective interactions at the interface of polymer–oxide hybrid solar cells

Eleonora Valeria Canesi; Maddalena Binda; Antonio Abate; Simone Guarnera; Luca Moretti; Valerio D'Innocenzo; R. Sai Santosh Kumar; Chiara Bertarelli; Agnese Abrusci; Henry J. Snaith; Alberto Calloni; Alberto Brambilla; Franco Ciccacci; S. Aghion; F. Moia; R. Ferragut; Claudio Melis; Giuliano Malloci; Alessandro Mattoni; Guglielmo Lanzani; Annamaria Petrozza

The working mechanisms of excitonic solar cells are strongly dominated by interface processes, which influence the final device efficiency. However, it is still very challenging to clearly track the effects of inter-molecular processes at a mesoscopic level. We report on the realization of polymer-based hybrid solar cells made of prototypical materials, namely, poly(3-hexylthiophene) (P3HT) finely infiltrated in a TiO2 scaffold, with power conversion efficiency exceeding 1%. A step-change improvement in the device performance is enabled by engineering the hybrid interface by the insertion of an appropriate molecular interlayer. An unprecedented set of characterization techniques, including time-resolved optical spectroscopy, X-ray photoemission spectroscopy, positron annihilation spectroscopy and atomistic simulations, allows us to rationalize our findings. We show that a suitable chemical structure of the interlayer molecule induces selective intermolecular interactions, and thus a preferential surface energetic landscape and morphological order at the interface which consequently drives a strong improvement in charge generation and a decrease in recombination losses.


Nature Communications | 2014

A moiré deflectometer for antimatter

S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; A. Gligorova

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.


Water Air and Soil Pollution | 2012

The Effect of the Organic Matter Composition on POP Accumulation in Soil

Paolo Tremolada; Niccolò Guazzoni; Luisa Smillovich; F. Moia; Roberto Comolli

The effect of different humic fractions on polychlorinated biphenyl (PCB) contamination in soils was tested in the field by means of 53 soil samples from a high-altitude grassland plateau in the Italian Alps. Three humic fractions (humin, humic acids, and fulvic acids) were characterized in parallel by quantifying 12 PCB congeners to establish a direct relationship between PCB levels and humic fraction concentrations. Humin (the most hydrophobic fraction) appears to be the most closely correlated with the amount of PCBs in soil (R2 = 0.83), while fulvic acid shows the lowest correlation (R2 = 0.49). The idea of preferential sorption of hydrophobic compounds in the humin fraction is discussed, and the humin carbon content (fhuminC) is proposed as an improved parameter for evaluating the potential for POP accumulation in soils, replacing total organic carbon (foc). Congener studies revealed that penta- and hexa-substituted-CBs show the optimal combination of physicochemical properties for equilibrating with the humin content in soil. Moreover, fhuminC/foc is conceptually equivalent to the empirical coefficients used in predictive Ksa equations. In our samples, the fhuminC/foc was 0.55, a value in between the empirical coefficients proposed in the literature. In predictive equations, the use of fhuminC instead foc avoids the necessity of using an empirical parameter for a ‘generic’ condition by introducing an experimental parameter (fhuminC) that takes into account local conditions (organic matter composition).


NON-NEUTRAL PLASMA PHYSICS VIII: 10th International Workshop on Non-Neutral Plasmas | 2013

AEgIS experiment commissioning at CERN

D. Krasnický; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; R. S. Brusa; J. Bremer; G. Burghart; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; L. Dassa; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi

The AEgIS Experiment is an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the gravitational field of the Earth. Cold antihydrogen will be produced with a pulsed charge exchange reaction in a cylindrical Penning trap where antiprotons will be cooled to 100mK. The cold antihydrogen will be produced in an excited Rydberg state and subsequently formed into a beam. The deflection of the antihydrogen beam will be measured by using Moire deflectometer gratings. After being approved in late 2008, AEgIS started taking data in a commissioning phase early 2012. This report presents an overview of the AEgIS experiment, describes its current status and shows the first measurements on antiproton catching and cooling in the 5 T Penning catching trap. We will also present details on the techniques needed for the 100mK antihydrogen production, such as pulsed positronium production and its excitation with lasers.


Journal of Instrumentation | 2014

Detection of low energy antiproton annihilations in a segmented silicon detector

S. Aghion; O. Ahlén; A. S. Belov; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; G. Burghart; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; J. H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; A. Gligorova; Sergei Gninenko; S. Haider; J. Harasimowicz

The goal of the AEIS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earths gravitational acceleration on antimatter by measuring the free fall of a pulsed, cold antihydrogen beam. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1% precision on the measurement of with about 600 reconstructed and time tagged annihilations. We present here the prospects for the development of the AEIS silicon position sentive detector and the results from the first beam tests on a monolithic silicon pixel sensor, along with a comparison to Monte Carlo simulations.


Journal of Instrumentation | 2014

Development of nuclear emulsions operating in vacuum for the AEgIS experiment

P. Scampoli; S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremere; R. S. Brusa; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Domizio; Lea Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova

For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earths local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment requires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results.


IEEE Transactions on Nuclear Science | 2014

Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons

A. Gligorova; S. Aghion; A. S. Belov; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; M. Caccia; R. Caravita; F. Castelli; G. Cerchiari; S. Cial; G. Consolati; J. H. Derking; C. Da Via; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; Sergei Gninenko; S. Haider; H. Holmestad; T. Huse; E. Jordan; T. Kaltenbacher

The principal aim of the AEgIS experiment at CERN is to measure the acceleration of antihydrogen due to Earths gravitational field. This would be a test of the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independently of their mass and composition. The effect of Earths gravitational field on antimatter will be determined by measuring the deflection of the path of the antihydrogen from a straight line. The position of the antihydrogen will be found by detecting its annihilation on the surface of a silicon detector. The gravitational measurement in AEgIS will be performed with a gravity module, which includes the silicon detector, an emulsion detector and a scintillating fibre time-of-flight detector. As the experiment attempts to determine the gravitational acceleration with a precision of 1%, a position resolution better than 10 μm is required. Here we present the results of a study of antiproton annihilations in a 3D silicon pixel sensor and compare the results with a previous study using a monolithic active pixel sensor. This work is part of a larger study on different silicon sensor technologies needed for the development of a silicon position detector for the AEgIS experiment. The 3D detector together with its readout electronics have been originally designed for the ATLAS detector at the LHC. The direct annihilation of low energy antiprotons ( ~ 100 keV) takes place in the first few μm of the silicon sensor and we show that the charged products of the annihilation can be detected with the same sensor. The present study also aims to understand the signature of an antiproton annihilation event in segmented silicon detectors and compares it with a GEANT4 simulation model. These results will be used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEgIS.


Philosophical Magazine | 2010

Vacancy–solute interactions during ageing of a cold-worked Mg–RE-based alloy

F. Moia; R. Ferragut; Alberto Calloni; A. Dupasquier; C. Macchi; A. Somoza; J.F. Nie

The vacancy–solute interactions during artificial ageing at 250○C of cold worked samples of a commercial magnesium alloy WE54 (Mg–RE based) were studied by coincidence Doppler broadening of positron annihilation radiation and positron annihilation lifetime spectroscopy. The results show that, in the as-cold-worked state, the vacancies are associated with dislocations that are generated by the cold work and that, after artificial ageing at 250○C, the vacancies are associated with solute elements and help the formation of precipitate precursors. This mechanism accelerates the formation of hardening precipitates without any apparent changes in the precipitation sequence and in the products of the decomposition of the supersaturated solid solution. The present study demonstrates that the stronger hardening response achieved in the cold-worked samples originates from the presence of a higher concentration of vacancies that is introduced by the cold work and is retained in the first few minutes of ageing.


International Journal of Materials Research | 2009

Vacancy–solute interaction in magnesium alloy WE54 during artificial ageing: a positron annihilation spectroscopy study

F. Moia; Alberto Calloni; R. Ferragut; A. Dupasquier; C. Macchi; A. Somoza; Jian Feng Nie

Abstract The vacancy – solute interaction during artificial ageing at 250 °C was studied in the commercial alloy WE54 by coincidence Doppler broadening of the positron annihilation radiation. The results show that in the initial state of ageing positron trapping is weak. Under these conditions, the faint signal comes predominantly from small Zr particles, with minor contributions from vacancy – Nd complexes. Positron trapping increases concomitantly with the formation of the ′- and 1-phases at the onset of precipitation hardening, and becomes very intense at later ageing stages when the 1-phase is formed. The chemical composition in contact with open-volume defects changes after 4 h of ageing with a progressive enrichment in Mg, concomitant with a hardness increase. There is evidence for a prevalence of Nd over Y up to 24 h of ageing and then a prevalence of Y over Nd for 96 h (Y/Nd 3) when the -phase is dominant.


Journal of Physics: Conference Series | 2013

Infiltration and Selective Interactions at the Interface in Polymer-Oxide Hybrid Solar Cells

R. Ferragut; S. Aghion; F. Moia; Maddalena Binda; Eleonora Valeria Canesi; Guglielmo Lanzani; Annamaria Petrozza

Positron annihilation spectroscopy was used to characterize polymer-based hybrid solar cells formed by poly(3-hexylthiophene) (P3HT) finely infiltrated in a porous TiO2 skeleton. A step-change improvement in the device performance is enabled by engineering the hybrid interface by the insertion of a proper molecular interlayer namely 4-mercaptopyridine (4-MP). In order to obtain depth-resolved data, positrons were implanted in the sample using a variable-energy positron beam. The characteristics of the partially filled nanoporous structures were evaluated in terms of the depth profile of the positronium yield and the S-parameter. A quantitative evaluation of the pore filling in the deep region is given from the analysis of Coincidence Doppler Broadening taken at fixed implantation energy. We note a remarkable difference in terms of the positronium yield when the 4-MP interlayer is introduced, which means a better covering of P3HT on the porous surface.

Collaboration


Dive into the F. Moia's collaboration.

Top Co-Authors

Avatar

R. Ferragut

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

S. Aghion

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

A. Fontana

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Bonomi

University of Brescia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Castelli

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

R. Caravita

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Cialdi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge