F. Motte
Paris Diderot University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Motte.
The Astrophysical Journal | 2002
H. Beuther; P. Schilke; K. M. Menten; F. Motte; T. K. Sridharan; F. Wyrowski
We present a detailed 1.2 mm continuum and CS spectral line study of a large sample of 69 massive star forming regions in very early stages of evolution, most of them prior to building up an ultracompact H II region. The continuum data show a zoo of different morphologies and give detailed information on the spatial distributions, masses, column densities, and average densities of the whole sample. Fitting the radial intensity profiles shows that three parameters are needed to describe the spatial distribution of the sources: constant emission from the center out to a few arcseconds radius followed by a first power-law intensity distribution, which steepens farther outside into a second power-law distribution. The inner flat region is possibly caused by fragmentation of the large-scale cores into smaller subsources, whereas the steeper outer power-law distributions indicate finite sizes of the cores. Separating the sources into subsamples suggests that in the earliest stages prior to the onset of massive star formation, the intensity radial distributions are rather flat, resembling the structure of intensity peaks in more quiescent molecular clouds. Then in the subsequent collapse and accretion phase the intensity distributions become centrally peaked, with steep power-law indices. In this evolutionary stage the sources show also the broadest C34S line width. During the following phase, when ultracompact H II regions evolve, the intensity power-law radial distributions flatten out again. This is probably caused by the ignited massive stars in the center which disrupt the surrounding cores. The mean inner power-law intensity index mi (I ~ r) is 1.2, corresponding to density indices p (n ~ r-p) of 1.6. In total, the density distributions of our massive star formation sites seem to be not too different from their low-mass counterparts, but we show that setting tight constrains on the density indices is very difficult and subject to many possible errors. The local densities we derive from CS calculations are higher (up to 1 order of magnitude) than the mean densities we find via the millimeter continuum. Such inhomogeneous density distribution reflects most likely the ubiquitous phenomenon of clumping and fragmentation in molecular clouds. Line width-mass relations show a departure from virial equilibrium in the stages of strongly collapsing cores.
Astronomy and Astrophysics | 2009
F. Schuller; K. M. Menten; Y. Contreras; F. Wyrowski; P. Schilke; L. Bronfman; T. Henning; C. M. Walmsley; H. Beuther; Sylvain Bontemps; R. Cesaroni; L. Deharveng; Guido Garay; Fabrice Herpin; B. Lefloch; H. Linz; Diego Mardones; V. Minier; S. Molinari; F. Motte; L.-Å. Nyman; V. Revéret; Christophe Risacher; D. Russeil; N. Schneider; L. Testi; T. Troost; T. Vasyunina; M. Wienen; A. Zavagno
Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explore s the southern sky at submillimeter wavelengths, both in continuum and in spectral line emission. Studying continuum emission from interstellar dust is essential to locate the highest densit y regions in the interstellar medium, and to derive their masses, column densities, density structures, and larger scale morpholog ies. In particular, the early stages of (massive) star forma tion are still quite mysterious: only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characteriz ed sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submillimeter wavelengths also represents a pioneering work in preparation for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 µm, with a beam of 19. ′′ 2. Taking advantage of its large field of view (11. ′ 4) and excellent sensitivity, we have started an unbiased survey of the whole Galactic Plane accessible to APEX, with a typical noise level of 50‐70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we have covered ∼95 deg 2 of the Galactic Plane. These data reveal∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the c ompact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact Hii regions or young embedded clusters, thus tracing more evolved stages after star formation has occurred. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M⊙. In this first introductory paper, we show preliminary resul ts from these ongoing observations, and discuss the mid- and long-term perspectives of the survey.
arXiv: Astrophysics of Galaxies | 2009
F. Schuller; Karl M. Menten; Y. Contreras; F. Wyrowski; P. Schilke; L. Bronfman; T. Henning; C. M. Walmsley; H. Beuther; Sylvain Bontemps; R. Cesaroni; L. Deharveng; Guido Garay; Fabrice Herpin; B. Lefloch; H. Linz; Diego Mardones; V. Minier; S. Molinari; F. Motte; L.-Å. Nyman; V. Reveret; C. Risacher; D. Russeil; N. Schneider; L. Testi; T. Troost; Tatiana Vasyunina; M. Wienen; A. Zavagno
Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explore s the southern sky at submillimeter wavelengths, both in continuum and in spectral line emission. Studying continuum emission from interstellar dust is essential to locate the highest densit y regions in the interstellar medium, and to derive their masses, column densities, density structures, and larger scale morpholog ies. In particular, the early stages of (massive) star forma tion are still quite mysterious: only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characteriz ed sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submillimeter wavelengths also represents a pioneering work in preparation for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 µm, with a beam of 19. ′′ 2. Taking advantage of its large field of view (11. ′ 4) and excellent sensitivity, we have started an unbiased survey of the whole Galactic Plane accessible to APEX, with a typical noise level of 50‐70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we have covered ∼95 deg 2 of the Galactic Plane. These data reveal∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the c ompact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact Hii regions or young embedded clusters, thus tracing more evolved stages after star formation has occurred. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M⊙. In this first introductory paper, we show preliminary resul ts from these ongoing observations, and discuss the mid- and long-term perspectives of the survey.
Astronomy and Astrophysics | 2013
P. Palmeirim; P. André; Jason M. Kirk; Derek Ward-Thompson; D. Arzoumanian; V. Könyves; P. Didelon; N. Schneider; M. Benedettini; Sylvain Bontemps; J. Di Francesco; D. Elia; Matthew Jason Griffin; M. Hennemann; T. Hill; P. G. Martin; A. Men’shchikov; S. Molinari; F. Motte; Q. Nguyen Luong; D. Nutter; Nicolas Peretto; S. Pezzuto; A. Roy; K. L. J. Rygl; L. Spinoglio; G. L. White
We present first results from the Herschel Gould Belt survey for the B211/L1495 region in the Taurus molecular cloud. Thanks to their high sensitivity and dynamic range, the Herschel images reveal the structure of the dense, star-forming filament B211 with unprecedented detail, along with the presence of striations perpendicular to the filament and generally oriented along the magnetic field direction as traced by optical polarization vectors. Based on the column density and dust temperature maps derived from the Herschel data, we find that the radial density profile of the B211 filament approaches power-law behavior, ρ ∝ r−2.0± 0.4, at large radii and that the temperature profile exhibits a marked drop at small radii. The observed density and temperature profiles of the B211 filament are in good agreement with a theoretical model of a cylindrical filament undergoing gravitational contraction with a polytropic equation of state: P ∝ ργ and T ∝ ργ−1, with γ = 0.97 ± 0.01 < 1 (i.e., not strictly isothermal). The morphology of the column density map, where some of the perpendicular striations are apparently connected to the B211 filament, further suggests that the material may be accreting along the striations onto the main filament. The typical velocities expected for the infalling material in this picture are ~0.5–1 km s-1, which are consistent with the existing kinematical constraints from previous CO observations.
Astronomy and Astrophysics | 2007
F. Motte; Sylvain Bontemps; P. Schilke; N. Schneider; K. M. Menten; D. Broguière
Aims. Our current knowledge of high-mass star formation is mainly based on follow-up studies of bright sources found by IRAS, and is thus biased against its earliest phases, inconspicuous at infrared wavelengths. We therefore started searching, in an unbiased way and in the closest high-mass star-forming complexes, for the high-mass analogs of low-mass pre-stellar cores and class 0 protostars. Methods.We have made an extensive 1.2 mm continuum mosaicing study of the Cygnus X molecular cloud complex using the MAMBO cameras at the IRAM 30 m telescope. The ~3°^(σ2) imaged areas cover all the high-column density (A_V ≥ 15 mag) clouds of this nearby (~1.7 kpc) cloud complex actively forming OB stars. We then compared our millimeter maps with mid-infrared images, and have made SiO(2-1) follow-up observations of the best candidate progenitors of high-mass stars. Results. Our complete study of Cygnus X with ~0.09 pc resolution provides, for the first time, an unbiased census of massive young stellar objects. We discover 129 massive dense cores (FWHM size ~0.1 pc, M_(1.2 mm) = 4-950 M_☉, volume-averaged density ~10^5 cm^(-3), among which ~42 are probable precursors of high-mass stars. A large fraction of the Cygnus X dense cores (2/3 of the sample) remain undetected by the MSX satellite, regardless of the mass range considered. Among the most massive (≥40 M_☉) cores, infrared-quiet objects are driving powerful outflows traced by SiO emission. Our study qualifies 17 cores as good candidates for hosting massive infrared-quiet protostars, while up to 25 cores potentially host high-luminosity infrared protostars. We fail to discover the high-mass analogs of pre-stellar dense cores (~0.1 pc, > 10^4 cm^-3)) in Cygnus X, but find several massive starless clumps (~0.8 pc, 7 × 10^3 cm^(-3)) that might be gravitationally bound. Conclusions. Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it gives the first statistical estimates of their lifetime. In contrast to what is found for low-mass class 0 and class I phases, the infrared-quiet protostellar phase of high-mass stars may last as long as their better-known high-luminosity infrared phase. The statistical lifetimes of high-mass protostars and pre-stellar cores (~3 × 10^4 yr and < 10^3 yr) in Cygnus X are one and two order(s) of magnitude smaller, respectively, than what is found in nearby, low-mass star-forming regions. We therefore propose that high-mass pre-stellar and protostellar cores are in a highly dynamic state, as expected in a molecular cloud where turbulent processes dominate.
Astronomy and Astrophysics | 2010
V. Könyves; P. André; A. Men'shchikov; N. Schneider; D. Arzoumanian; Sylvain Bontemps; M. Attard; F. Motte; P. Didelon; A. Maury; Alain Abergel; B. Ali; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; Peter G. Martin; V. Minier; S. Molinari; G. Olofsson; S. Pezzuto; D. Russeil; Helene Roussel
The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys.
Astronomy and Astrophysics | 2012
N. Schneider; T. Csengeri; M. Hennemann; F. Motte; P. Didelon; Christoph Federrath; Sylvain Bontemps; J. Di Francesco; D. Arzoumanian; V. Minier; P. André; T. Hill; A. Zavagno; Q. Nguyen-Luong; M. Attard; J.-Ph. Bernard; D. Elia; C. Fallscheer; Matthew Joseph Griffin; Jason M. Kirk; Ralf S. Klessen; V. Könyves; P. G. Martin; A. Men'shchikov; P. Palmeirim; Nicolas Peretto; M. Pestalozzi; D. Russeil; S. Sadavoy; T. Sousbie
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.
Astronomy and Astrophysics | 2007
P. André; A. Belloche; F. Motte; Nicolas Peretto
Context. The earliest phases of clustered star formation and the origin of the stellar initial mass function (IMF) are currently much debated. In one school of thought the IMF of embedded clusters is entirely determined by turbulent fragmentation at the prestellar stage of star formation, while in a major alternative view it results from dynamical interactions and competitive accretion at the protostellar stage. Aims. In an effort to discriminate between these two pictures for the origin of the IMF, we investigated the internal and relative motions of starless condensations and protostars previously detected by us in the dust continuum at 1.2 mm in the L1688 protocluster of the Ophiuchus molecular cloud complex. The starless condensations have a mass spectrum resembling the IMF and are therefore likely representative of the initial stages of star formation in the protocluster. Methods. We carried out detailed molecular line observations, including some N2H + (1−0) mapping, of the Ophiuchus protocluster condensations using the IRAM 30 m telescope. Results. We measured subsonic or at most transonic levels of internal turbulence within the condensations, implying virial masses which generally agree within a factor of ∼2 with the masses derived from the 1.2 mm dust continuum. This supports the notion that most of the L1688 starless condensations are gravitationally bound and prestellar in nature. We detected the classical spectroscopic signature of infall motions in CS(2–1), CS(3–2), H2CO(212−111), and/or HCO + (3–2) toward six condensations, and obtained tentative infall signatures toward 10 other condensations. In addition, we measured a global one-dimensional velocity dispersion of less than 0. 4k m s −1 (or twice the sound speed) between condensations. The small relative velocity dispersion implies that, in general, the condensations do not have time to interact with one another before evolving into pre-main sequence objects. Conclusions. Our observations support the view that the IMF is partly determined by cloud fragmentation at the prestellar stage. Competitive accretion is unlikely to be the dominant mechanism at the protostellar stage in the Ophiuchus protocluster, but it may possibly govern the growth of starless, self-gravitating condensations initially produced by gravoturbulent fragmentation toward an IMF, Salpeter-like mass spectrum.
The Astrophysical Journal | 2011
S. Molinari; John Bally; Alberto Noriega-Crespo; M. Compiegne; J.-P. Bernard; D. Paradis; P. Martin; L. Testi; M. J. Barlow; T. J. T. Moore; R. Plume; B. M. Swinyard; A. Zavagno; L. Calzoletti; A. M. di Giorgio; D. Elia; F. Faustini; P. Natoli; M. Pestalozzi; S. Pezzuto; F. Piacentini; G. Polenta; D. Polychroni; E. Schisano; A. Traficante; M. Veneziani; Cara Battersby; Michael G. Burton; Sean J. Carey; Yasuo Fukui
Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a similar to 3 x 10(7) M-circle dot ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40 degrees with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x(2) orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.
Astronomy and Astrophysics | 2010
N. Schneider; T. Csengeri; Sylvain Bontemps; F. Motte; R. Simon; Patrick Hennebelle; Christoph Federrath; Ralf S. Klessen
The formation of massive stars is a highly complex process in which it is not clear whether the star-forming gas is in global gravitational collapse or in an equilibrium state, supported by turbulence. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, the filament containing the well-known sources DR21 and DR21(OH), we expect to find observational signatures that allow to discriminate between the two views. We use molecular line data from our 13CO 1-0, CS 2-1, and N2H+ 1-0 survey of the Cygnus X region obtained with the FCRAO and high-angular resolution observations of CO, CS, HCO+, N2H+, and H2CO, obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of highest column-density, i.e. dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO+ and 12CO are observed along and across the whole DR21 filament. From modelling the observed spectra, we obtain a typical infall speed of 0.6 km/s and mass accretion rates of the order of a few 10^-3 Msun/yr for the two main clumps constituting the filament. These massive (4900 and 3300 Msun) clumps are both gravitationally contracting. All observed kinematic features in the DR21 filament can be explained if it is formed by the convergence of flows at large scales and is now in a state of global gravitational collapse. Whether this convergence of flows originated from self-gravity at larger scales or from other processes can not be settled with the present study. The observed velocity field and velocity dispersion are consistent with results from (magneto)-hydrodynamic simulations where the cores lie at the stagnation points of convergent turbulent flows.