F. Němec
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Němec.
Journal of Geophysical Research | 2009
F. Němec; Ondrej Santolik; M. Parrot
[1] We present results of a systematic study of intensity of VLF electromagnetic waves observed by the DEMETER spacecraft in the upper ionosphere (altitude 700 km). We focus on the detailed analysis of the previously reported decrease of wave intensity shortly before the main shock during the nighttime. Using a larger set of data (more than 3.5 years of measurements) and a newly developed data processing method, we confirm the existence of a very small but statistically significant decrease of wave intensity 0‐4 hours before the time of the main shock at frequencies of about 1.7 kHz. It is shown that the decrease does not occur directly above the earthquake epicenter but is shifted about 2 in the westward direction. Moreover, it is demonstrated that the decrease occurs more often close to shallower earthquakes and close to earthquakes with larger magnitudes, as it is ‘‘intuitively’’ expected, representing an additional proof of validity of the obtained results. Finally, no dependence has been found on the occurrence of the earthquake below the ocean or below the continents.
Journal of Geophysical Research | 2015
Z. Hrbáčková; Ondrej Santolik; F. Němec; E. Macúšová; N. Cornilleau-Wehrlin
We report results of a systematic analysis of equatorial noise (EN) emissions which are also known as fast magnetosonic waves. EN occurs in the vicinity of the geomagnetic equator at frequencies between the local proton cyclotron frequency and the lower hybrid frequency. Our analysis is based on the data collected by the Spatio-Temporal Analysis of Field Fluctuations–Spectrum Analyzer instruments on board the four Cluster spacecraft. The data set covers the period from January 2001 to December 2010. We have developed selection criteria for the visual identification of these emissions, and we have compiled a list of more than 2000 events identified during the analyzed time period. The evolution of the Cluster orbit enables us to investigate a large range of McIlwains parameter from about L∼1.1 to L∼10. We demonstrate that EN can occur at almost all analyzed L shells. However, the occurrence rate is very low (<6%) at L shells below L=2.5 and above L=8.5. EN mostly occurs between L=3 and L=5.5, and within 7° of the geomagnetic equator, reaching 40% occurrence rate. This rate further increases to more than 60% under geomagnetically disturbed conditions. Analysis of occurrence rates as a function of magnetic local time (MLT) shows strong variations outside of the plasmasphere (with a peak around 15 MLT), while the occurrence rate inside the plasmasphere is almost independent on MLT. This is consistent with the hypothesis that EN is generated in the afternoon sector of the plasmapause region and propagates both inward and outward.
Journal of Geophysical Research | 2006
F. Němec; Ondrej Santolik; M. Parrot; Jean-Jacques Berthelier
Results of a systematic survey of Power Line Harmonic Radiation (PLHR) observed by a recently (June 2004) launched French spacecraft DEMETER are presented. In order to obtain a statistically significant number of events, an automatic identification procedure has been developed and all the available high-resolution data have been processed. Altogether, 58 events have been found in 865 hours of data recorded during the first year of operation. These events form three different classes: with frequency spacing of spectral lines of 50/100 Hz (10 events), with frequency spacing of 60/120 Hz (13 events), with other spacings/not clear cases (35 events). The first two classes of events are discussed in detail, showing that their origin is most probably connected with the radiation from the electric power systems which are magnetically conjugated with the place of observation. Additionally, in more than one half of the cases, the frequencies of PLHR lines well corresponded to the multiples of the power system frequency. The frequency drift of all the observed events was very slow, if observable. The events occurred without any significant preference for low or high geomagnetic activity, although more intense events were observed during disturbed times. Simultaneous observations of electric and magnetic components of PLHR suggest that the waves propagate in the electromagnetic right-hand polarized whistler mode.
Journal of Geophysical Research | 2015
F. Němec; Ondrej Santolik; Z. Hrbáčková; Jolene S. Pickett; N. Cornilleau-Wehrlin
Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.
Journal of Geophysical Research | 2015
F. Němec; Ondrej Santolik; Z. Hrbáčková; N. Cornilleau-Wehrlin
Equatorial noise (EN) emissions are electromagnetic waves observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. We present the analysis of 2229 EN events identified in the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment data of the Cluster spacecraft during the years 2001–2010. EN emissions are distinguished using the polarization analysis, and their intensity is determined based on the evaluation of the Poynting flux rather than on the evaluation of only the electric/magnetic field intensity. The intensity of EN events is analyzed as a function of the frequency, the position of the spacecraft inside/outside the plasmasphere, magnetic local time, and the geomagnetic activity. The emissions have higher frequencies and are more intense in the plasma trough than in the plasmasphere. EN events observed in the plasma trough are most intense close to the local noon, while EN events observed in the plasmasphere are nearly independent on magnetic local time (MLT). The intensity of EN events is enhanced during disturbed periods, both inside the plasmasphere and in the plasma trough. Observations of the same events by several Cluster spacecraft allow us to estimate their spatiotemporal variability. EN emissions observed in the plasmasphere do not change on the analyzed spatial scales (ΔMLT<0.2h, Δr<0.2 RE), but they change significantly on time scales of about an hour. The same appears to be the case also for EN events observed in the plasma trough, although the plasma trough dependencies are less clear.
Journal of Geophysical Research | 2014
M. Hayosh; F. Němec; Ondrej Santolik; M. Parrot
We present a survey of quasiperiodic (QP) ELF/VLF emissions detected onboard the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite (altitude of about 700 km, nearly Sun-synchronous orbit at 10:30/22:30 LT). Six years of data have been visually inspected for the presence of QP emissions with modulation periods higher than 10 s and with frequency bandwidths higher than 200 Hz. It is found that these QP events occur in about 5% of daytime half orbits, while they are basically absent during the night. The events occur predominantly during quiet geomagnetic conditions following the periods of enhanced geomagnetic activity. Their occurrence and properties are systematically analyzed. QP emissions occur most often at frequencies from about 750 Hz to 2 kHz, but they may be observed at frequencies as low as 500 Hz and as high as 8 kHz. Modulation periods of QP events may range from about 10 to 100 s, with typical values of 20 s. Frequency drifts of the identified events are generally positive, but they are lower for events with larger modulation periods. The events are usually limited to higher L values (L > 2). The upper L shell boundary of their occurrence could not be identified using the DEMETER data, but they are found to extend up to at least L ~ 6. The occurrence rate of the events is significantly lower at the longitudes of the South Atlantic anomaly (by a factor of more than 2).
Journal of Geophysical Research | 2010
F. Němec; Ondrej Santolik; M. Parrot; Craig J. Rodger
[1] We present results of a survey of VLF electromagnetic waves observed by the DEMETER spacecraft (altitude about 700 km, launched in June 2004, and still operating). The median value of the power spectral density of electric field fluctuations in the frequency range 1-10 kHz is evaluated as a function of the position of the spacecraft, frequency, magnetic local time, and season of the year. It is shown that there are significant seasonal differences between the satellite observed wave intensities throughout the year and it is demonstrated that these are due to the lightning activity changes of the Earth. The frequency spectrum at frequencies 0-20 kHz of electromagnetic emissions caused by the lightning activity is investigated as a function of geomagnetic latitude. It is shown that the effect of the lightning activity is most pronounced at frequencies larger than about 2 kHz, forming a continuous band of emissions and being the strongest during the nighttime because of the better coupling efficiency of electromagnetic waves through the ionosphere.
Journal of Geophysical Research | 2015
D. J. Andrews; Niklas J. T. Edberg; Anders Eriksson; D. A. Gurnett; D. D. Morgan; F. Němec; H. J. Opgenoorth
We present observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Marss remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from ∼300 km to ∼1200 km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.
Journal of Geophysical Research | 2013
F. Němec; Ondrej Santolik; M. Parrot; Jolene S. Pickett; M. Hayosh; N. Cornilleau-Wehrlin
Quasi-periodic (QP) emissions are electromagnetic emissions at frequencies of about 0.5-4 kHz that are characterized by a periodic time modulation of the wave intensity. Typical periods of this modulation are on the order of minutes. We present a case study of a large-scale long-lasting QP event observed simultaneously on board the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) and the Cluster spacecraft. The measurements by the Wide-Band Data instrument on board the Cluster spacecraft enabled us to obtain high-resolution frequency-time spectrograms of the event close to the equatorial region over a large range of radial distances, while the measurements by the STAFF-SA instrument allowed us to perform a detailed wave analysis. Conjugate observations by the DEMETER spacecraft have been used to estimate the spatial and temporal extent of the emissions. The analyzed QP event lasted as long as 5 h and it spanned over the L-shells from about 1.5 to 5.5. Simultaneous observations of the same event by DEMETER and Cluster show that the same QP modulation of the wave intensity is observed at the same time at very different locations in the inner magnetosphere. ULF magnetic field fluctuations with a period roughly comparable to, but somewhat larger than the period of the QP modulation were detected by the fluxgate magnetometers instrument on board the Cluster spacecraft near the equatorial region, suggesting these are likely to be related to the QP generation. Results of a detailed wave analysis show that the QP emissions detected by Cluster propagate unducted, with oblique wave normal angles at higher geomagnetic latitudes.
Geophysical Research Letters | 2014
F. Němec; D. D. Morgan; Catherine Dieval; D. A. Gurnett; Yoshifumi Futaana
Electron densities in the Martian nightside ionosphere are more than 90% of time too low to be detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar sounder on board the Mars Express spacecraft. However, the relative number of ionograms with peak electron density high enough to be detected represents a good statistical proxy of the ionospheric density. We focus on solar energetic particle (SEP) events, and we analyze their effects on ionospheric formation. SEP time intervals were identified in situ using the background counts recorded by the ion sensor of the ASPERA-3 instrument on board Mars Express. We show that peak electron densities during the SEP events are large enough to be detected in more than 30% of measurements, and, moreover, the reflections of the sounding signal from the ground almost entirely disappear. Nightside electron densities during SEP events are thus substantially increased as compared to normal nightside conditions.