F.O. Ongondo
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F.O. Ongondo.
Waste Management | 2011
F.O. Ongondo; Ian D. Williams; Tom Cherrett
This paper presents and critically analyses the current waste electrical and electronic equipment (WEEE) management practices in various countries and regions. Global trends in (i) the quantities and composition of WEEE; and (ii) the various strategies and practices adopted by selected countries to handle, regulate and prevent WEEE are comprehensively examined. The findings indicate that for (i), the quantities of WEEE generated are high and/or on the increase. IT and telecommunications equipment seem to be the dominant WEEE being generated, at least in terms of numbers, in Africa, in the poorer regions of Asia and in Latin/South America. However, the paper contends that the reported figures on quantities of WEEE generated may be grossly underestimated. For (ii), with the notable exception of Europe, many countries seem to be lacking or are slow in initiating, drafting and adopting WEEE regulations. Handling of WEEE in developing countries is typified by high rate of repair and reuse within a largely informal recycling sector. In both developed and developing nations, the landfilling of WEEE is still a concern. It has been established that stockpiling of unwanted electrical and electronic products is common in both the USA and less developed economies. The paper also identifies and discusses four common priority areas for WEEE across the globe, namely: (i) resource depletion; (ii) ethical concerns; (iii) health and environmental issues; and (iv) WEEE takeback strategies. Further, the paper discusses the future perspectives on WEEE generation, treatment, prevention and regulation. Four key conclusions are drawn from this review: global amounts of WEEE will continue unabated for some time due to emergence of new technologies and affordable electronics; informal recycling in developing nations has the potential of making a valuable contribution if their operations can be changed with strict safety standards as a priority; the pace of initiating and enacting WEEE specific legislation is very slow across the globe and in some cases non-existent; and globally, there is need for more accurate and current data on amounts and types of WEEE generated.
Waste Management | 2011
F.O. Ongondo; Ian D. Williams
Mobile phones are the most ubiquitous electronic product on the globe. They have relatively short lifecycles and because of their (perceived) in-built obsolescence, discarded mobile phones represent a significant and growing problem with respect to waste electrical and electronic equipment (WEEE). An emerging and increasingly important issue for industry is the shortage of key metals, especially the types of metals found in mobile phones, and hence the primary aim of this timely study was to assess and evaluate the voluntary mobile phone takeback network in the UK. The study has characterised the information, product and incentives flows in the voluntary UK mobile phone takeback network and reviewed the merits and demerits of the incentives offered. A survey of the activities of the voluntary mobile phone takeback schemes was undertaken in 2008 to: identify and evaluate the takeback schemes operating in the UK; determine the target groups from whom handsets are collected; and assess the collection, promotion and advertising methods used by the schemes. In addition, the survey sought to identify and critically evaluate the incentives offered by the takeback schemes, evaluate their ease and convenience of use; and determine the types, qualities and quantities of mobile phones they collect. The study has established that the UK voluntary mobile phone takeback network can be characterised as three distinctive flows: information flow; product flow (handsets and related accessories); and incentives flow. Over 100 voluntary schemes offering online takeback of mobile phone handsets were identified. The schemes are operated by manufacturers, retailers, mobile phone network service operators, charities and by mobile phone reuse, recycling and refurbishing companies. The latter two scheme categories offer the highest level of convenience and ease of use to their customers. Approximately 83% of the schemes are either for-profit/commercial-oriented and/or operate to raise funds for charities. The voluntary schemes use various methods to collect mobile phones from consumers, including postal services, courier and in-store. The majority of schemes utilise and finance pre-paid postage to collect handsets. Incentives offered by the takeback schemes include monetary payments, donation to charity and entry into prize draws. Consumers from whom handsets and related equipment are collected include individuals, businesses, schools, colleges, universities, charities and clubs with some schemes specialising on collecting handsets from one target group. The majority (84.3%) of voluntary schemes did not provide information on their websites about the quantities of mobile phones they collect. The operations of UK takeback schemes are decentralised in nature. Comparisons are made between the UKs decentralised collection system versus Australias centralised network for collection of mobile phones. The significant principal conclusions from the study are: there has been a significant rise in the number of takeback schemes operating in the UK since the initial scheme was launched in 1997; the majority of returned handsets seem to be of low quality; and there is very little available information on the quantities of mobile phones collected by the various schemes. Irrespective of their financial motives, UK takeback schemes increasingly play an important role in sustainable waste management by diverting EoL mobile phones from landfills and encouraging reuse and recycling. Recommendations for future actions to improve the management of end-of-life mobile phone handsets and related accessories are made.
Waste Management | 2011
F.O. Ongondo; Ian D. Williams; S. Keynes
Using Hampshire County Council (HCC) as a case study, this paper evaluates and discusses the estimated impacts of the so-called digital switchover (DSO) (scheduled for 2012 in Hampshire) on Household Waste Recycling Centres (HWRCs) in England and the UK. Two public surveys of Hampshire residents were used to collect data on their preparedness for and awareness of the switchover and its implications. The survey also sought to establish the quantities of televisions (TVs) and TV related devices that are ready for the DSO. The quantities of TV and related devices that are likely to be disposed via HCCs collection network have been established and compared to the Countys current handling capacities for waste electronic and electrical equipment (WEEE). Best and worst case potential net disposal scenarios have been established and the latter compared to Government projections. In addition, the potential environmental, logistical, financial and legal impacts of the WEEE arising as a consequence of the switchover have been identified and discussed. The results indicate that the majority of TVs both in Hampshire and the UK are digital ready and that awareness of the switchover is high. In contrast, most recording devices in Hampshire are not ready for the DSO. Awareness of the timeframe of the event remains modest however and about half of Hampshire households were not aware that TV recording devices will be affected by the switchover. A significant proportion of waste TVs and related equipment would be taken to HWRCs in contrast to smaller items such as remote controls that would more likely be disposed with normal household waste. Projected figures for the DSO year show that if Hampshire maintained its current collection capacity for WEEE it would experience a handling shortfall of around ∼100K for TVs and recording devices, respectively. The most important finding of the study is that the UK Government may have substantially underestimated the quantities of TV and related devices that will be disposed during the switchover. The potential impacts for local and national WEEE management have been discussed. The paper concludes by making recommendations to address identified issues.
Archive | 2011
F.O. Ongondo; Ian D. Williams
Electrical and electronic equipment (EEE) that has come to its end-of-life (EoL) either by ceasing to function or ceasing to be of any value to its owners is commonly referred to as e-waste. In the European Union (EU), these wastes are referred to as waste electrical and electronic equipment (WEEE). This chapter discusses two key themes critical to understanding and tackling the challenge posed by WEEE, namely: (i) four key issues that make WEEE a priority waste stream; and (ii) WEEE management practices in various countries and regions. Drawing on a comprehensive literature review and four case studies, this chapter critically analyses and discusses the factors that influence the generation, collection and disposal of WEEE, specifically addressing the spatial and temporal interactions of these factors before an alternative approach to conceptualising and managing WEEE is proposed
Waste Management | 2011
F.O. Ongondo; Ian D. Williams
Waste Management | 2013
F.O. Ongondo; Ian D. Williams; Johannes Dietrich; C. Carroll
Waste Management | 2015
F.O. Ongondo; Ian D. Williams; G. Whitlock
Proceedings of the Institution of Civil Engineers - Waste and Resource Management | 2012
F.O. Ongondo; Ian D. Williams
Archive | 2009
F.O. Ongondo; Ian D. Williams
Recycling | 2016
Erni Mariana Mukhtar; Ian D. Williams; P.J. Shaw; F.O. Ongondo