Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Pilato is active.

Publication


Featured researches published by F. Pilato.


Electroencephalography and Clinical Neurophysiology\/electromyography and Motor Control | 1998

Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans.

V. Di Lazzaro; Antonio Oliviero; P. Profice; E. Saturno; F. Pilato; Angelo Insola; Paolo Mazzone; Pietro Tonali; John C. Rothwell

OBJECTIVES The present experiments were designed to compare the understanding of the transcranial electric and magnetic stimulation of the human motorcortex. METHODS The spinal volleys evoked by single transcranial magnetic or electric stimulation over the cerebral motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of two conscious human subjects. These volleys were termed D- and I waves, according to their latency. Magnetic stimulation was performed with a figure-of-eight coil held over the right motor cortex at the optimum scalp position, in order to elicit motor responses in the contralateral FDI using two different orientations over the motor strip. The induced current flowed either in a postero-anterior or in a latero-medial direction. RESULTS At active motor threshold intensity, the electric anodal stimulation evoked pure D activity. At this intensity, magnetic stimulation with the induced current flowing in a posterior-anterior direction evoked pure I1 activity. When a latero-medial induced current was used, magnetic stimulation evoked both D and I1 activity. Using electric anodal stimulation, at a stimulus intensity of 9% of the stimulator output above the active motor threshold (corresponding approximately to 1.5 active motor threshold), a small I1 wave appeared only in subject 1. Using magnetic stimulation with a posterior-anterior induced current, at a stimulus intensity of 21% of maximum stimulator output above the active motor threshold (corresponding approximately to 1.8 times threshold in subject 1 and to two times threshold in subject 2), a small D wave appeared in subject 1 but not in subject 2. CONCLUSIONS Present results demonstrate that, in conscious humans at threshold intensities, electric stimulation evokes D waves and magnetic stimulation (with a posterior-anterior induced current) evokes I waves, while magnetic stimulation (with a latero-medial induced current) evokes both activities.


The Journal of Physiology | 2005

Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex

V. Di Lazzaro; F. Pilato; E. Saturno; Antonio Oliviero; Michele Dileone; Paolo Mazzone; Angelo Insola; Pietro Tonali; Federico Ranieri; Ying-Zu Huang; John C. Rothwell

In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single‐pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta‐burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor‐evoked potentials (MEPs), with the maximum effect occurring at 5–10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short‐interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long‐term depression in excitatory synaptic connections.


Experimental Neurology | 2004

Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease.

Peter Brown; Paolo Mazzone; Antonio Oliviero; M G Altibrandi; F. Pilato; Pietro Tonali; V. Di Lazzaro

The pattern of neuronal discharge within the basal ganglia is disturbed in Parkinsons disease (PD). In particular, there is a tendency for neuronal elements to synchronise at around 20 Hz in the absence of dopaminergic treatment, whereas this activity can be replaced by spontaneous synchronisation at much higher frequencies (>70 Hz) following dopaminergic treatment [J. Neurosci. 21 (2001) 1033; Brain 126 (2003) 2153]. In two PD patients (3 sides), we show that stimulating the subthalamic area at around 20 Hz exacerbates synchronisation at similar frequencies in the globus pallidus interna, the major output structure of the human basal ganglia. In contrast, stimulating the subthalamic area at >70 Hz suppresses pallidal activity at about 20 Hz. Clinically, stimulation of the subthalamic area at similar high frequencies reverses parkinsonism and forms the basis of therapeutic deep brain stimulation in PD. The results point to a possible common mechanism by which both dopaminergic treatment associated synchronisation of subthalamic activity at very high frequency and synchronisation imposed by therapeutic stimulation of the subthalamic area inhibit an abnormal and potentially deleterious synchronisation of basal ganglia output at around 20 Hz. If this activity is unchecked by synchronisation at higher frequency, then pathological 20-Hz oscillations may cascade through the basal ganglia, increasing at subsequent levels of processing.


Neurology | 2002

Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation

V. Di Lazzaro; A. Oliviero; Pietro Tonali; Camillo Marra; Antonio Daniele; P. Profice; E. Saturno; F. Pilato; Carlo Masullo; John C. Rothwell

BackgroundA recently devised test of motor cortex excitability (short latency afferent inhibition) was shown to be sensitive to the blockade of muscarinic acetylcholine receptors in healthy subjects. The authors used this test to assess cholinergic transmission in the motor cortex of patients with AD. MethodsThe authors evaluated short latency afferent inhibition in 15 patients with AD and compared the data with those of 12 age-matched healthy controls. ResultsAfferent inhibition was reduced in the patients (mean responses ± SD reduced to 85.7% ± 15.8% of the test size) compared with controls (mean responses ± SD reduced to 45.3% ± 16.2% of the test size;p < 0.001, unpaired t-test). Administration of a single oral dose of rivastigmine improved afferent inhibition in a subgroup of six patients. ConclusionsThe findings suggest that this method can be used as a noninvasive test of cholinergic pathways in AD. Future studies are required to evaluate whether short latency afferent inhibition measurements have any consistent clinical correlates.


The Journal of Physiology | 2003

Ketamine Increases Human Motor Cortex Excitability to Transcranial Magnetic Stimulation

V. Di Lazzaro; Antonio Oliviero; P. Profice; Mariano Alberto Pennisi; F. Pilato; G. Zito; Michele Dileone; R. Nicoletti; Patrizio Pasqualetti; Pietro Tonali

Subanaesthetic doses of the N‐methyl‐d‐aspartate (NMDA) antagonist ketamine have been shown to determine a dual modulating effect on glutamatergic transmission in experimental animals, blocking NMDA receptor activity and enhancing non‐NMDA transmission through an increase in the release of endogenous glutamate. Little is known about the effects of ketamine on the excitability of the human central nervous system. The effects of subanaesthetic, graded incremental doses of ketamine (0.01, 0.02 and 0.04 mg kg−1 min−1, i.v.) on the excitability of cortical networks of the human motor cortex were examined with a range of transcranial magnetic and electric stimulation protocols in seven normal subjects. Administration of ketamine at increasing doses produced a progressive reduction in the mean resting motor threshold (RMT) (F(3, 18) = 22.33, P < 0.001) and active motor threshold (AMT) (F(3, 18) = 12.17, P < 0.001). Before ketamine administration, mean RMT ±s.d. was 49 ± 3.3 % of maximum stimulator output and at the highest infusion level it was 42.6 ± 2.6 % (P < 0.001). Before ketamine administration, AMT ±s.d. was 38 ± 3.3 % of maximum stimulator output and at the highest infusion level it was 33 ± 4.4 % (P < 0.002). Ketamine also led to an increase in the amplitude of EMG responses evoked by magnetic stimulation at rest; this increase was a function of ketamine dosage (F(3, 18) = 5.29, P= 0.009). In contrast to responses evoked by magnetic stimulation, responses evoked by electric stimulation were not modified by ketamine. The differential effect of ketamine on responses evoked by magnetic and electric stimulation demonstrates that subanaesthetic doses of ketamine enhance the recruitment of excitatory cortical networks in motor cortex. Transcranial magnetic stimulation produces a high‐frequency repetitive discharge of pyramidal neurones and for this reason probably depends mostly on short‐lasting AMPA transmission. An increase in this transmission might facilitate the repetitive discharge of pyramidal cells after transcranial magnetic stimulation which, in turn, results in larger motor responses and lower thresholds. We suggest that the enhancement of human motor cortex excitability to transcranial magnetic stimulation is the effect of an increase in glutamatergic transmission at non‐NMDA receptors similar to that described in experimental studies.


The Journal of Physiology | 2008

The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex

V. Di Lazzaro; F. Pilato; Michele Dileone; P. Profice; Antonio Oliviero; Paolo Mazzone; Angelo Insola; Federico Ranieri; Mario Meglio; Pietro Tonali; John C. Rothwell

Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (TMS). When applied to motor cortex it leads to after‐effects on corticospinal and corticocortical excitability that may reflect LTP/LTD‐like synaptic effects. An inhibitory form of TBS (continuous, cTBS) suppresses MEPs, and spinal epidural recordings show this is due to suppression of the I1 volley evoked by TMS. Here we investigate whether the excitatory form of TBS (intermittent, iTBS) affects the same I‐wave circuitry. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after iTBS in three conscious patients who had an electrode implanted in the cervical epidural space for the control of pain. As in healthy subjects, iTBS increased MEPs, and this was accompanied by a significant increase in the amplitude of later I‐waves, but not the I1 wave. In two of the patients we tested the excitability of the contralateral cortex and found a significant suppression of the late I‐waves. The extent of the changes varied between the three patients, as did their age. To investigate whether age might be a significant contributor to the variability we examined the effect of iTBS on MEPs in 18 healthy subjects. iTBS facilitated MEPs evoked by TMS of the conditioned hemisphere and suppressed MEPs evoked by stimulation of the contralateral hemisphere. There was a slight but non‐significant decline in MEP facilitation with age, suggesting that interindividual variability was more important than age in explaining our data. In a subgroup of 10 subjects we found that iTBS had no effect on the duration of the ipsilateral silent period suggesting that the reduction in contralateral MEPs was not due to an increase in ongoing transcallosal inhibition. In conclusion, iTBS affects the excitability of excitatory synaptic inputs to pyramidal tract neurones that are recruited by a TMS pulse, both in the stimulated hemisphere and in the contralateral hemisphere. However the circuits affected differ from those influenced by the inhibitory, cTBS, protocol. The implication is that cTBS and iTBS may have different therapeutic targets.


Journal of Neurology, Neurosurgery, and Psychiatry | 2004

Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease

V. Di Lazzaro; Antonio Oliviero; F. Pilato; E. Saturno; Michele Dileone; Camillo Marra; Antonio Daniele; Stefano Ghirlanda; Guido Gainotti; Pietro Tonali

Objectives: Recent transcranial magnetic stimulation (TMS) studies demonstrate that motor cortex excitability is increased in Alzheimer’s disease (AD) and that intracortical inhibitory phenomena are impaired. The aim of the present study was to determine whether hyperexcitability is due to the impairment of intracortical inhibitory circuits or to an independent abnormality of excitatory circuits. Methods: We assessed the excitability of the motor cortex with TMS in 28 patients with AD using several TMS paradigms and compared the data of cortical excitability (evaluated by measuring resting motor threshold) with the amount of motor cortex disinhibition as evaluated using the test for motor cortex cholinergic inhibition (short latency afferent inhibition) and GABAergic inhibition (short latency intracortical inhibition). The data in AD patients were also compared with that from 12 age matched healthy individuals. Results: The mean resting motor threshold was significantly lower in AD patients than in controls. The amount of short latency afferent inhibition was significantly smaller in AD patients than in normal controls. There was also a tendency for AD patients to have less pronounced short latency intracortical inhibition than controls, but this difference was not significant. There was no correlation between resting motor threshold and measures of either short latency afferent or intracortical inhibition (r = −0.19 and 0.18 respectively, NS). In 14 AD patients the electrophysiological study was repeated after a single oral dose of the cholinesterase inhibitor rivastigmine. Resting motor threshold was not significantly modified by the administration of rivastigmine. In contrast, short latency afferent inhibition from the median nerve was significantly increased by the administration of rivastigmine. Conclusions: The change in threshold did not seem to correlate with dysfunction of inhibitory intracortical cholinergic and GABAergic circuits, nor with the central cholinergic activity. We propose that the hyperexcitability of the motor cortex is caused by an abnormality of intracortical excitatory circuits.


Experimental Brain Research | 2001

The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation

V. Di Lazzaro; Antonio Oliviero; E. Saturno; F. Pilato; Angelo Insola; Paolo Mazzone; P. Profice; Pietro Tonali; John C. Rothwell

Abstract. Descending corticospinal volleys were recorded from a bipolar electrode inserted into the cervical epidural space of four conscious human subjects after monophasic transcranial magnetic stimulation over the motor cortex with a figure-of-eight coil. We examined the effect of reversing the direction of the induced current in the brain from the usual posterior-anterior (PA) direction to an anterior-posterior (AP) direction. The volleys were compared with D waves evoked by anodal electrical stimulation (two subjects) or medio-lateral magnetic stimulation (two subjects). As reported previously, PA stimulation preferentially recruited I1 waves, with later I waves appearing at higher stimulus intensities. AP stimulation tended to recruit later I waves (I3 waves) in one of the subjects, but, in the other three, I1 or D waves were seen. Unexpectedly, the descending volleys evoked by AP stimulation often had slightly different peak latencies and/or longer duration than those seen after PA stimulation. In addition the relationship between the size of the descending volleys and the subsequent EMG response was often different for AP and PA stimulation. These findings suggest that AP stimulation does not simply activate a subset of the sites activated by PA stimulation. Some sites or neurones that are relatively inaccessible to PA stimulation may be the low-threshold targets of AP stimulation.


The Journal of Physiology | 2005

Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans

V. Di Lazzaro; A. Oliviero; E. Saturno; Michele Dileone; F. Pilato; Raffaele Nardone; Federico Ranieri; Gabriella Musumeci; T. Fiorilla; Pietro Tonali

Experimental studies have demonstrated that the GABAergic system modulates acetylcholine release and, through GABAA receptors, tonically inhibits cholinergic activity. Little is known about the effects of GABA on the cholinergic activity in the human central nervous system. In vivo evaluation of some cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with TMS of the motor cortex. Peripheral nerve inputs have an inhibitory effect on motor cortex excitability at short intervals (short latency afferent inhibition, SAI). We investigated whether GABAA activity enhancement by lorazepam modifies SAI. We also evaluated the effects produced by lorazepam on a different TMS protocol of cortical inhibition, the short interval intracortical inhibition (SICI), which is believed to be directly related to GABAA activity. In 10 healthy volunteers, the effects of lorazepam were compared with those produced by quetiapine, a psychotropic drug with sedative effects with no appreciable affinity at cholinergic muscarinic and benzodiazepine receptors, and with those of a placebo using a randomized double‐blind study design. Administration of lorazepam produced a significant increase in SICI (F3,9= 3.19, P= 0.039). In contrast to SICI, SAI was significantly reduced by lorazepam (F3,9= 9.39, P= 0.0002). Our findings demonstrate that GABAA activity enhancement determines a suppression of SAI and an increase of SICI.


Journal of Neurophysiology | 2011

Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation

V. Di Lazzaro; Michele Dileone; F. Pilato; Fioravante Capone; Gabriella Musumeci; Federico Ranieri; Valerio Ricci; Pietro Bria; R. Di Iorio; C de Waure; Patrizio Pasqualetti; P. Profice

Repetitive transcranial magnetic stimulation (rTMS) of human motor cortex can produce long-lasting changes in the excitability of excitatory and inhibitory neuronal networks. The effects of rTMS depend critically on stimulus frequency. The aim of our present study was to compare the effects of different rTMS protocols. We compared the aftereffects of 6 different rTMS protocols [paired associative stimulation at interstimulus intervals of 25 (PAS(25)) and 10 ms (PAS(10)); theta burst stimulation delivered as continuous (cTBS) or intermittent delivery pattern (iTBS); 1- and 5-Hz rTMS] on the excitability of stimulated and contralateral motor cortex in 10 healthy subjects. A pronounced increase of cortical excitability, evaluated by measuring the amplitude of motor evoked potentials (MEPs), was produced by iTBS (+56%) and PAS(25) (+45%). Five-hertz rTMS did not produce a significant increase of MEPs. A pronounced decrease of cortical excitability was produced by PAS(10) (-31%), cTBS (-29%), and 1-Hz rTMS (-20%). Short-interval intracortical inhibition was suppressed by PAS(10). Cortical silent period duration was increased by 1-Hz stimulation. No significant effect was observed in the contralateral hemisphere. Head-to-head comparison of the different protocols enabled us to identify the most effective paradigms for modulating the excitatory and inhibitory circuits activated by TMS.

Collaboration


Dive into the F. Pilato's collaboration.

Top Co-Authors

Avatar

P. Profice

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

V. Di Lazzaro

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Michele Dileone

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Pietro Tonali

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Di Lazzaro

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Antonio Oliviero

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

E. Saturno

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Federico Ranieri

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Fioravante Capone

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge