Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. René-Corail is active.

Publication


Featured researches published by F. René-Corail.


Cancer Research | 2005

Mutations of β-Catenin in Adrenocortical Tumors: Activation of the Wnt Signaling Pathway Is a Frequent Event in both Benign and Malignant Adrenocortical Tumors

Frédérique Tissier; Catherine Cavard; Lionel Groussin; Karine Perlemoine; Gwladys Fumey; Anne-Marie Hagneré; F. René-Corail; E. Jullian; Christine Gicquel; Xavier Bertagna; Marie-Cécile Vacher-Lavenu; Christine Perret; Jérôme Bertherat

Adrenocortical cancer is a rare cancer with a very poor prognosis. The genetic alterations identified to date in adrenocortical tumors are limited. Activating mutations of the Wnt signaling pathway have been observed in more frequent cancers, particularly digestive tract tumors. We investigated whether Wnt pathway activation is involved in adrenocortical tumorigenesis. In a series of 39 adrenocortical tumors, immunohistochemistry revealed abnormal cytoplasmic and/or nuclear accumulation of beta-catenin in 10 of 26 adrenocortical adenomas and in 11 of 13 adrenocortical carcinomas. An activating somatic mutation of the beta-catenin gene was shown in 7 of 26 adrenocortical adenomas and in 4 of 13 adrenocortical carcinomas; these mutations were observed only in adrenocortical tumors with abnormal beta-catenin accumulation and most were point mutations altering the Ser45 of exon 3 (in the consensus GSK3-beta/CK1 phosphorylation site). Functional studies showed that the activating Ser45 beta-catenin mutation found in the adrenocortical cancer H295R cell line leads to constitutive activation of T-cell factor-dependent transcription. This is the first molecular defect to be reported with the same prevalence in both benign (27%) and malignant (31%) adrenocortical tumors. beta-Catenin mutations are also the most frequent genetic defect currently known in adrenocortical adenomas. In adrenocortical adenomas, beta-catenin alterations are more frequent in nonfunctioning tumors, suggesting that beta-catenin pathway activation might be mostly involved in the development of nonsecreting adrenocortical adenomas and adrenocortical carcinomas. The very frequent and substantial accumulation of beta-catenin in adrenocortical carcinomas suggests that other alterations might also be involved. This finding may contribute to new therapeutic approaches targeting the Wnt pathway in malignant adrenocortical tumors, for which limited medical therapy is available.


Journal of Clinical Oncology | 2009

Gene Expression Profiling Reveals a New Classification of Adrenocortical Tumors and Identifies Molecular Predictors of Malignancy and Survival

Aurélien de Reyniès; Guillaume Assié; David S. Rickman; Frédérique Tissier; Lionel Groussin; F. René-Corail; Bertrand Dousset; Xavier Bertagna; Eric Clauser; Jérôme Bertherat

PURPOSE Adrenocortical tumors, especially cancers, remain challenging both for their diagnosis and prognosis assessment. The aim of this article is to identify molecular predictors of malignancy and of survival. PATIENTS AND METHODS One hundred fifty-three unilateral adrenocortical tumors were studied by microarray (n = 92) or reverse transcription quantitative polymerase chain reaction (n = 148). A two-gene predictor of malignancy was built using the disease-free survival as the end point in a training cohort (n = 47), then validated in an independent validation cohort (n = 104). The best candidate genes were selected using Cox models, and the best gene combination was validated using the log-rank test. Similarly, for malignant tumors, a two-gene predictor of survival was built using the overall survival as the end point in a training cohort (n = 23), then tested in an independent validation cohort (n = 35). RESULTS Unsupervised clustering analysis discriminated robustly the malignant and benign tumors, and identified two groups of malignant tumors with very different outcome. The combined expression of DLG7 and PINK1 was the best predictor of disease-free survival (log-rank P approximately 10(-12)), could overcome the uncertainties of intermediate pathological Weiss scores, and remained significant after adjustment to the Weiss score (P < 1.3 x 10(-2)). Among the malignant tumors, the combined expression of BUB1B and PINK1 was the best predictor of overall survival (P < 2 x 10(-6)), and remained significant after adjusting for MacFarlane staging (P < .005). CONCLUSION Gene expression analysis unravels two distinct groups of adrenocortical carcinomas. The molecular predictors of malignancy and of survival are reliable and provide valuable independent information in addition to pathology and tumor staging. These original tools should provide important improvements for adrenal tumors management.


Nature Genetics | 2014

Integrated genomic characterization of adrenocortical carcinoma

Guillaume Assié; Eric Letouzé; Martin Fassnacht; Anne Jouinot; Windy Luscap; Olivia Barreau; Hanin Omeiri; S. Rodriguez; Karine Perlemoine; F. René-Corail; Nabila Elarouci; Silviu Sbiera; Matthias Kroiss; Bruno Allolio; Jens Waldmann; Marcus Quinkler; Massimo Mannelli; Franco Mantero; Thomas G. Papathomas; Ronald R. de Krijger; Antoine Tabarin; V. Kerlan; Eric Baudin; Frédérique Tissier; Bertrand Dousset; Lionel Groussin; Laurence Amar; Eric Clauser; Xavier Bertagna; Bruno Ragazzon

Adrenocortical carcinomas (ACCs) are aggressive cancers originating in the cortex of the adrenal gland. Despite overall poor prognosis, ACC outcome is heterogeneous. We performed exome sequencing and SNP array analysis of 45 ACCs and identified recurrent alterations in known driver genes (CTNNB1, TP53, CDKN2A, RB1 and MEN1) and in genes not previously reported in ACC (ZNRF3, DAXX, TERT and MED12), which we validated in an independent cohort of 77 ACCs. ZNRF3, encoding a cell surface E3 ubiquitin ligase, was the most frequently altered gene (21%) and is a potential new tumor suppressor gene related to the β-catenin pathway. Our integrated genomic analyses further identified two distinct molecular subgroups with opposite outcome. The C1A group of ACCs with poor outcome displayed numerous mutations and DNA methylation alterations, whereas the C1B group of ACCs with good prognosis displayed specific deregulation of two microRNA clusters. Thus, aggressive and indolent ACCs correspond to two distinct molecular entities driven by different oncogenic alterations.


The New England Journal of Medicine | 2013

ARMC5 Mutations in Macronodular Adrenal Hyperplasia with Cushing's Syndrome

Guillaume Assié; Rossella Libé; Stéphanie Espiard; Marthe Rizk-Rabin; Anne Guimier; Windy Luscap; Olivia Barreau; Lucile Lefèvre; Mathilde Sibony; Laurence Guignat; S. Rodriguez; Karine Perlemoine; F. René-Corail; Franck Letourneur; Bilal Trabulsi; Alix Poussier; Nathalie Chabbert-Buffet; Françoise Borson-Chazot; Lionel Groussin; Xavier Bertagna; Constantine A. Stratakis; Bruno Ragazzon; Jérôme Bertherat; Abstr Act

BACKGROUND Corticotropin-independent macronodular adrenal hyperplasia may be an incidental finding or it may be identified during evaluation for Cushings syndrome. Reports of familial cases and the involvement of both adrenal glands suggest a genetic origin of this condition. METHODS We genotyped blood and tumor DNA obtained from 33 patients with corticotropin-independent macronodular adrenal hyperplasia (12 men and 21 women who were 30 to 73 years of age), using single-nucleotide polymorphism arrays, microsatellite markers, and whole-genome and Sanger sequencing. The effects of armadillo repeat containing 5 (ARMC5) inactivation and overexpression were tested in cell-culture models. RESULTS The most frequent somatic chromosome alteration was loss of heterozygosity at 16p (in 8 of 33 patients for whom data were available [24%]). The most frequent mutation identified by means of whole-genome sequencing was in ARMC5, located at 16p11.2. ARMC5 mutations were detected in tumors obtained from 18 of 33 patients (55%). In all cases, both alleles of ARMC5 carried mutations: one germline and the other somatic. In 4 patients with a germline ARMC5 mutation, different nodules from the affected adrenals harbored different secondary ARMC5 alterations. Transcriptome-based classification of corticotropin-independent macronodular adrenal hyperplasia indicated that ARMC5 mutations influenced gene expression, since all cases with mutations clustered together. ARMC5 inactivation decreased steroidogenesis in vitro, and its overexpression altered cell survival. CONCLUSIONS Some cases of corticotropin-independent macronodular adrenal hyperplasia appear to be genetic, most often with inactivating mutations of ARMC5, a putative tumor-suppressor gene. Genetic testing for this condition, which often has a long and insidious prediagnostic course, might result in earlier identification and better management. (Funded by Agence Nationale de la Recherche and others.).


European Journal of Endocrinology | 2007

Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas

Laure Cazabat; Rossella Libé; Karine Perlemoine; F. René-Corail; Nelly Burnichon; Anne-Paule Gimenez-Roqueplo; Laurence Dupasquier-Fediaevsky; Xavier Bertagna; Eric Clauser; Philippe Chanson; Jérôme Bertherat; Marie-Laure Raffin-Sanson

OBJECTIVE Germline mutations of the aryl hydrocarbon receptor-interacting protein gene (AIP) have recently been described in three families with GH or prolactin-secreting tumors, as well as in a few patients with apparently sporadic somatotropinomas. The aim of the study was to determine the prevalence of AIP mutations in a large cohort of patients with apparently sporadic GH-secreting tumors. DESIGN One hundred and fifty-four patients were included in a prospective cohort designed to study the genetic predisposition to GH-secreting tumors together with 270 controls. METHODS In all these subjects, the entire coding sequence of the AIP gene was screened for germline mutations. RESULTS AIP mutations were detected in 5 out of 154 patients (3%): nonsense mutations in exon 4 (p.Lys201X; n = 2) and in exon 6 (p.Arg304X), one deletion in exon 3 (c.404delA; pHis135LeufsX21), and one mutation affecting the splice acceptor site of exon 4 (c.469-2 A > G). The five patients with an AIP mutation were significantly younger (mean age +/- S.D.: 25 +/- 10 vs 43 +/- 14 years, P = 0.005) and three of them presented with gigantism. One missense mutation (p.Arg304Gln) was found in a single patient that was absent in all controls. CONCLUSIONS Germline mutations of the AIP gene were found in a small proportion of patients with sporadic pituitary somatotropinomas. This study shows that age and gigantism are simple clinical features which can help to select patients for mutation screening. It also supports the role of AIP in pituitary tumorigenesis.


Human Mutation | 2010

Mutations and Polymorphisms in the Gene Encoding Regulatory Subunit Type 1-alpha of Protein Kinase A (PRKAR1A): An Update

Anelia Horvath; Jérôme Bertherat; Lionel Groussin; Marine Guillaud-Bataille; Kitman Tsang; Laure Cazabat; Rosella Libé; Elaine F. Remmers; F. René-Corail; Fabio R. Faucz; Eric Clauser; Alain Calender; Xavier Bertagna; J. Aidan Carney; Constantine A. Stratakis

PRKAR1A encodes the regulatory subunit type 1‐alpha (RIα) of the cyclic adenosine monophosphate (cAMP)‐dependent protein kinase (PKA). Inactivating PRKAR1A mutations are known to be responsible for the multiple neoplasia and lentiginosis syndrome Carney complex (CNC). To date, at least 117 pathogenic variants in PRKAR1A have been identified (online database: http://prkar1a.nichd.nih.gov). The majority are subject to nonsense mediated mRNA decay (NMD), leading to RIα haploinsufficiency and, as a result, activated cAMP signaling. Recently, it became apparent that CNC may be caused not only by RIα haploinsufficiency, but also by the expression of altered RIα protein, as proven by analysis of expressed mutations in the gene, consisting of aminoacid substitutions and in‐frame genetic alterations. In addition, a new subgroup of mutations that potentially escape NMD and result in CNC through altered (rather than missing) protein has been analyzed—these are frame‐shifts in the 3′ end of the coding sequence that shift the stop codon downstream of the normal one. The mutation detection rate in CNC patients is recently estimated at above 60%; PRKAR1A mutation‐negative CNC patients are characterized by significant phenotypic heterogeneity. In this report, we present a comprehensive analysis of all presently known PRKAR1A sequence variations and discuss their molecular context and clinical phenotype. Hum Mutat 31:369–379, 2010. Published 2010 Wiley‐Liss, Inc.


Clinical Cancer Research | 2007

Somatic TP53 Mutations Are Relatively Rare among Adrenocortical Cancers with the Frequent 17p13 Loss of Heterozygosity

Rossella Libé; Lionel Groussin; Frédérique Tissier; Caroline Elie; F. René-Corail; Amato Fratticci; E. Jullian; Paolo Beck-Peccoz; Xavier Bertagna; Christine Gicquel; Jérôme Bertherat

Purpose: Allelic losses [loss of heterozygosity (LOH)] at the 17p13 locus are frequent (85%) in adrenocortical cancers. The tumor suppressor gene TP53 is located at 17p13. The aim of the study was to determine the frequency of TP53 somatic inactivating mutations in adrenocortical tumors with 17p13 LOH and their clinico-biological correlations. Experimental Design:TP53 somatic mutations, intragenic LOH (VNTR1 marker), and p53 overexpression were studied in 36 adrenocortical tumors with 17p13 LOH determined by Southern blot. Results:TP53 mutations were detected in 33% of the tumors, and VNTR1 LOH was present in 44% of the cases and did not always correlate with the presence of a TP53 mutation. Only the TP53-mutant tumors exhibit a strong nuclear immunoreactivity. TP53-mutant tumors were significantly larger than wild-type TP53 tumors (median tumor weight: 640 versus 185 g; P = 0.02), were associated with a more advanced stage of tumor progression (MacFarlane stage IV; P = 0.01), and had a shorter disease-free survival (P = 0.03). Conclusions: The finding that only a minority of adrenocortical tumors with 17p13 LOH had either a VNTR1 LOH or a TP53 mutation indicates that TP53 might not be the only or major tumor suppressor gene at 17p13 involved in adrenocortical cancer progression. We suggest that a genetic instability of the 17p13 region, occurring early in adrenocortical cancer development, involves various genes located in this region. TP53 might be only one of them, and its alteration by the occurrence of inactivating mutation is associated with the development of more aggressive tumors.


Clinical Cancer Research | 2008

Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors.

Rossella Libé; Amato Fratticci; Joël Coste; Frédérique Tissier; Anelia Horvath; Bruno Ragazzon; F. René-Corail; Lionel Groussin; Xavier Bertagna; Marie Laure Raffin-Sanson; Constantine A. Stratakis; Jérôme Bertherat

Purpose: We have reported previously nonsense inactivating mutations of the phosphodiesterase 11A (PDE11A) gene in patients with micronodular adrenocortical hyperplasia and Cushing syndrome. The aim of this study is to investigate the presence of somatic or germ-line PDE11A mutations in various types of adrenocortical tumors: ACTH-independent macronodular adrenocortical hyperplasia (AIMAH), adrenocortical adenoma (ACA), and adrenocortical cancer (ACC). Experimental Design:PDE11A was sequenced in 117 adrenocortical tumors and 192 controls subjects; immunohistochemistry for PDE11A and tumor cyclic AMP levels were studied in a subgroup of adrenocortical tumors. Results: One PDE11A inactivating mutation (R307X) was found in one ACA, 22 germ-line missense variants (18.8%) were found in adrenocortical tumors, and only 11 missense variants (5.7%) were found in controls. By comparing the common mutations, a higher frequency of mutations in adrenocortical tumors than in age/sex-matched controls were observed [16% versus 10% in ACC, 19% versus 10% in ACA, and 24% versus 9% in AIMAH; odds ratio (OR), 3.53; P = 0.05]. Somatic DNA from adrenocortical tumors with missense variants showed a wild-type allelic loss. A significant difference between ACC and controls was observed for a polymorphism in exon 6 (E421E; OR, 2.1; P = 0.03) and three associated polymorphisms located in intron 10-exon 11-intron 11 (OR, 0.5; P = 0.01). In AIMAH/ACA, cyclic AMP levels were higher than in normal adrenals and decreased PDE11A immunostaining was present in adrenocortical tumors with PDE11A variants. Conclusions: The present investigation of a large cohort of adrenocortical tumors suggests that PDE11A sequence defects predispose to a variety of lesions (beyond micronodular adrenocortical hyperplasia) and may contribute to the development of these tumors in the general population.


The Journal of Clinical Endocrinology and Metabolism | 2013

Identification of a CpG Island Methylator Phenotype in Adrenocortical Carcinomas

Olivia Barreau; Guillaume Assié; Hortense Wilmot-Roussel; Bruno Ragazzon; Camille Baudry; Karine Perlemoine; F. René-Corail; Xavier Bertagna; Bertrand Dousset; Nadim Hamzaoui; Frédérique Tissier; Aurélien de Reyniès; Jérôme Bertherat

PURPOSE DNA methylation is a mechanism for gene expression silencing in cancer. Limited information is available for adrenocortical tumors. Abnormal methylation at the IGF2/H19 locus is common in adrenocortical carcinomas. Our aim was to characterize the methylation in adrenocortical carcinomas at a whole-genome scale and to assess its clinical significance and its impact on gene expression. EXPERIMENTAL DESIGN Methylation patterns of CpG islands in promoter regions of 51 adrenocortical carcinomas and 84 adenomas were studied by the Infinium HumanMethylation27 Beadchip (Illumina, San Diego, CA). Methylation of 33 genes was studied by methylation-specific multiplex ligation-dependent probe amplification (MRC-Holland, Amsterdam, The Netherlands) in 15 carcinomas. Gene expression data were available for 87 tumors from a previous study (HG-U133Plus2.0 AffymetrixGeneChip; Affymetrix, Santa Clara, CA). Clinical information, including patient features and survival, were available for all tumors. RESULTS Methylation was higher in carcinomas than in adenomas (t test P = 3.1 × 10(-9)). Unsupervised clustering of DNA methylation profiles identified two groups of carcinomas, one with an elevated methylation level, evoking a CpG island methylator phenotype (CIMP). The subgroup of hypermethylated carcinomas was further divided in two subgroups, with different levels of methylation (CIMP-high and CIMP-low). This classification could be confirmed by methylation-specific multiplex ligation-dependent probe amplification. Hypermethylation was associated with a poor survival (Cox model P = 0.02). The transcriptome/methylation correlation showed 1741 genes (of 12,250) negatively correlated; among the top genes were H19 and other tumor suppressors (PLAGL-1, G0S2, and NDRG2). CONCLUSIONS This genome-wide methylation analysis reveals the existence of hypermethylated adrenocortical carcinomas, with a poorer prognosis. Hypermethylation in these tumors is important for silencing specific tumor suppressor genes.


The Journal of Clinical Endocrinology and Metabolism | 2010

Systematic Analysis of G Protein-Coupled Receptor Gene Expression in Adrenocorticotropin-Independent Macronodular Adrenocortical Hyperplasia Identifies Novel Targets for Pharmacological Control of Adrenal Cushing’s Syndrome

Guillaume Assié; Estelle Louiset; Nathalie Sturm; F. René-Corail; Lionel Groussin; J. Bertherat; M. Thomas; H. Lefebvre; Jean-Jacques Feige; Eric Clauser; Olivier Chabre; Nadia Cherradi

CONTEXT Stimulation of cortisol secretion through abnormally expressed G protein-coupled receptors (GPCRs) is a frequent feature of ACTH-independent macronodular adrenal hyperplasia (AIMAH). This has opened a pharmacological strategy that targets GPCRs for the treatment of Cushings syndrome in AIMAH. However, only few drugs are available for the presently described GPCRs. OBJECTIVE The objective of the study was to identify new GPCR targets for the pharmacological treatment of adrenal Cushings syndrome. DESIGN AND PATIENTS We designed a cDNA chip containing 865 nucleotidic sequences of GPCRs. mRNAs were extracted from three normal adrenals, 18 AIMAHs, four adrenals from Cushings disease patients, and 13 cortisol-secreting adenomas. A set of GPCR mRNAs that showed significantly higher or lower expression in AIMAH than in normal adrenal were studied by quantitative RT-PCR analysis. Analysis of protein expression and function were performed on selected GPCRs. SETTING The study was conducted at a tertiary care center and basic research laboratories. RESULTS The ACTH MC2 receptor showed a low expression in 15 of 18 AIMAHs samples, whereas several previously undescribed GPCR genes were found highly expressed in a subset of AIMAH, such as the receptors for motilin (MLNR; three of 18 AIMAHs) and γ-aminobutyric acid (GABBR1; five of 18 AIMAHs), and the α2A adrenergic receptor (ADRA2A; 13 of 18 AIMAHs), on which we focused our attention. Western blot and immunochemistry analyses showed expression of ADRA2A protein in AIMAH but not in normal adrenal cortex. The ADRA2A agonist clonidine enhanced both basal and stimulated cortisol production. Clonidine-induced increase in basal cortisol levels was blocked by the ADRA2A antagonist yohimbine. CONCLUSION ADRA2A is a potential target for pharmacological treatment of Cushings syndrome linked to AIMAH.

Collaboration


Dive into the F. René-Corail's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Assié

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Lionel Groussin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Karine Perlemoine

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Eric Clauser

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Rossella Libé

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bertrand Dousset

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bruno Ragazzon

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Olivia Barreau

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Xavier Bertagna

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge