Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Salemi is active.

Publication


Featured researches published by F. Salemi.


Physical Review D | 2011

Localization of gravitational wave sources with networks of advanced detectors

S. Klimenko; G. Vedovato; M. Drago; G. Mazzolo; Guenakh Mitselmakher; C. Pankow; G. A. Prodi; V. Re; F. Salemi; I. Yakushin

Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and network configurations.


Physical Review Letters | 2005

3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors

L. Baggio; M. Bignotto; M. Bonaldi; Massimo Cerdonio; L. Conti; P. Falferi; N. Liguori; A. Marin; R. Mezzena; A. Ortolan; S. Poggi; G. A. Prodi; F. Salemi; G. Soranzo; L. Taffarello; G. Vedovato; Andrea Vinante; S. Vitale; J. P. Zendri

Along with peak sensitivity, an important parameter of a resonant gravitational wave detector is its bandwidth. In addition to the obvious advantage of making the detector more sensitive to short bursts, a wider bandwidth would allow, for instance, details of the signal emitted during a supernova gravitational collapse or the merger of compact binaries to be resolved [1]. Moreover, a wider bandwidth reduces the uncertainty in the burst arrival time [2] and consequently, with a detector network, permits a more precise source location and a higher efficiency of spurious events rejection [3]. The introduction of a mechanically resonant transducer, a standard practice in actual resonant detectors, has greatly improved the coupling between the bar and the amplifier, but the bandwidth is intrinsically limited [4], and in practice, according to the full width at half maximum (FWHM) definition applied to the two minima of the Shh strain noise spectra, values of a few Hz have been achieved [5]. The use of multimode resonant transducers should permit further improvements of the detector bandwidth [6]. This approach has been studied [7] in depth and a few 2-mode transducer prototypes have been realized [8] or are under development [9] to obtain 3mode operation of the resonant mass detectors. This Letter describes how a wider detection bandwidth can be obtained with an alternative 2-mode transduction system in which the resonant amplification is realized by means of a resonant mechanical mode plus a resonant electrical matching network. It also describes the key tests performed on the components of the transduction system in order to verify the achievement of the requirements set by analysis of the detector model. Figure 1 shows the electromechanical scheme of a cryogenic detector with a resonant capacitive transducer read by a SQUID amplifier. The matching transformer couples the output impedance of the transducer (a capacitance of a few nF) to the input impedance of the SQUID (a small


Physical Review D | 2016

Proposed search for the detection of gravitational waves from eccentric binary black holes

V. Tiwari; Sergey Klimenko; N. Christensen; E. A. Huerta; S. R P Mohapatra; A. Gopakumar; M. Haney; P. Ajith; S. T. McWilliams; G. Vedovato; M. Drago; F. Salemi; G. A. Prodi; C. Lazzaro; S. Tiwari; G. Mitselmakher; F. Da Silva

Most compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasicircular orbits are suboptimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.


Physical Review D | 2012

Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos

B. Baret; I. Bartos; B. Bouhou; E. Chassande-Mottin; A. Corsi; Irene Di Palma; C. Donzaud; M. Drago; C. Finley; G. Jones; Sergey Klimenko; A. Kouchner; S. Márka; Zsuzsa Marka; L. Moscoso; M. A. Papa; T. Pradier; G. A. Prodi; P. Raffai; V. Re; J. Rollins; F. Salemi; Patrick J. Sutton; M. Tse; Véronique Van Elewyck; G. Vedovato

We present the baseline multimessenger analysis method for the joint observations of gravitational waves (GW) and high-energy neutrinos (HEN), together with a detailed analysis of the expected science reach of the joint search. The analysis method combines data from GW and HEN detectors, and uses the blue-luminosity-weighted distribution of galaxies. We derive expected GW+HEN source rate upper limits for a wide range of source parameters covering several emission models. Using published sensitivities of externally triggered searches, we derive joint upper limit estimates both for the ongoing analysis with the initial LIGO-Virgo GW detectors with the partial IceCube detector (22 strings) HEN detector and for projected results to advanced LIGO-Virgo detectors with the completed IceCube (86 strings). We discuss the constraints these upper limits impose on some existing GW+HEN emission models.


Physical Review D | 2016

Leveraging waveform complexity for confident detection of gravitational waves

J. B. Kanner; T. B. Littenberg; Neil J. Cornish; Meg Millhouse; Enia Xhakaj; F. Salemi; M. Drago; G. Vedovato; Sergey Klimenko

The recent completion of Advanced LIGO suggests that gravitational waves may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to perform well and, in particular, to allow high-confidence detections of a range of waveforms at a realistic signal-to-noise ratio with a two-detector network.


Physical Review D | 2010

IGEC2: A 17-month search for gravitational wave bursts in 2005-2007

P. Astone; L. Baggio; M. Bassan; M. Bignotto; M. Bonaldi; P. Bonifazi; G. Cavallari; M. Cerdonio; E. Coccia; L. Conti; S. D'Antonio; M. Di Paolo Emilio; M. Drago; V. Fafone; P. Falferi; Stefano Foffa; Pierluigi Fortini; S. Frasca; G. Giordano; W. O. Hamilton; J. Hanson; W. W. Johnson; N. Liguori; S. Longo; Michele Maggiore; F. Marin; A. Marini; M. McHugh; R. Mezzena; P. Miller

We present here the results of a 515 day search for short bursts of gravitational waves by the IGEC2 observatory. This network included 4 cryogenic resonant-bar detectors: AURIGA, EXPLORER, and NAUTILUS in Europe, and ALLEGRO in America. These results cover the time period from November 6th 2005 until April 15th 2007, partly overlapping the first long term observations by the LIGO interferometric detectors. The observatory operated with high duty cycle, namely, 57% for fourfold coincident observations, and 94% for threefold observations. The sensitivity was the best ever obtained by a bar network: we could detect, with an efficiency >50%, impulsive events with a burst strain amplitude h{sub rss} < or approx. 1x10{sup -19} Hz{sup -1/2}. The network data analysis was based on time coincidence searches over at least three detectors, used a blind search technique, and was tuned to achieve a false alarm rate of 1/century. When the blinding was removed, no gravitational wave candidate was found.


International Journal of Modern Physics D | 2000

INITIAL OPERATION OF THE INTERNATIONAL GRAVITATIONAL EVENT COLLABORATION

G. A. Prodi; V. Martinucci; R. Mezzena; Andrea Vinante; S. Vitale; I.S. Heng; Z. Allen; W. O. Hamilton; W. W. Johnson; M. McHugh; G. Santostasi; P. Astone; L. Baggio; Massimo Cerdonio; L. Conti; V. Crivelli Visconti; E. Rocco; M. Bassan; E. Coccia; Y. Minenkov; I. Modena; A. Moleti; G. Pizzella; David Blair; Eugene Ivanov; Clayton R. Locke; Michael E. Tobar; H. Bonaldi; P. Falferi; P. Bonifazi

The International Gravitational Event Collaboration, IGEC, is a coordinated effort by research groups operating gravitational wave detectors working towards the detection of millisecond bursts of gravitational waves. Here we report on the current IGEC resonant bar observatory, its data analysis procedures, the main properties of the first exchanged data set. Even though the available data set is not complete, in the years 1997 and 1998 up to four detectors were operating simultaneously. Preliminary results are mentioned.


Physical Review D | 2018

Sensitivity of gravitational wave searches to the full signal of intermediate mass black hole binaries during the LIGO O1 Science Run

Juan Calderón Bustillo; F. Salemi; Tito Dal Canton; K. Jani

The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter--based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.


Classical and Quantum Gravity | 2015

Regression of Environmental Noise in LIGO Data

V. Tiwari; M. Drago; Valery Frolov; Sergey Klimenko; Guenakh Mitselmakher; V. Necula; G. A. Prodi; V. Re; F. Salemi; G. Vedovato; I. Yakushin

We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the gravitational-wave channel from the PEM measurements. One of the most promising regression method is based on the construction of Wiener-Kolmogorov filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the Wiener-Kolmogorov method has been extended, incorporating banks of Wiener filters in the time-frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we presents the first results on regression of the bi-coherent noise in the LIGO data.


Physical Review D | 2014

Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

G. Mazzolo; F. Salemi; M. Drago; V. Necula; C. Pankow; G. A. Prodi; V. Re; V. Tiwari; G. Vedovato; I. Yakushin; Sergey Klimenko

We estimated the sensitivity of the upcoming advanced ground-based gravitational-wave observatories (the LIGO, Virgo, and KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to simulated data from detectors and searched for the injected signals with the coherent WaveBurst algorithm. The tested parameter space of the binaries covers nonspinning IMBHBs with source-frame total masses between 50 and 1050M⊙ and mass ratios between 1=6 and 1. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and to open a new, intriguing channel for probing the Universe over cosmological scales.

Collaboration


Dive into the F. Salemi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Conti

University of Trento

View shared research outputs
Top Co-Authors

Avatar

P. Falferi

fondazione bruno kessler

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Ortolan

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Andrea Vinante

fondazione bruno kessler

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Bonaldi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge