Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Schillaci is active.

Publication


Featured researches published by F. Schillaci.


Journal of Instrumentation | 2015

Design of the ELIMAIA ion collection system

F. Schillaci; G.A.P. Cirrone; G. Cuttone; M. Maggiore; L. Andò; A. Amato; G. Gallo; G. Korn; G. Larosa; R. Leanza; R. Manna; D. Margarone; G. Milluzzo; S. Pulvirenti; F. Romano; S. Salamone; M. Sedita; V. Scuderi; A. Tramontana

A system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN-LNS to be used as a collection system for the injection of laser driven ion beams up to 60 MeV/u in an energy selector based on four resistive dipoles. This system is the first element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first users open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary researches. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the magnetic selection system which will be designed in the next months. Here, we report the design of the collection system and the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described.


Journal of Physics: Conference Series | 2014

ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines

F. Schillaci; Antonello Anzalone; G.A.P. Cirrone; M. Carpinelli; G. Cuttone; Mariapompea Cutroneo; C. De Martinis; D. Giove; G. Korn; M. Maggiore; Lorenzo Manti; D. Margarone; Agatino Musumarra; F Perozziello; Ivan Petrović; P. Pisciotta; Marcella Renis; Aleksandra Ristić-Fira; F. Romano; Giuseppe Schettino; V. Scuderi; L. Torrisi; A. Tramontana; S. Tudisco

ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.


Journal of Instrumentation | 2014

Calibration and energy resolution study of a high dispersive power Thomson Parabola Spectrometer with monochromatic proton beams

F. Schillaci; M. Maggiore; A. Velyhan; G.A.P. Cirrone; G. Cuttone; D. Margarone; G. Parasiliti Palumbo; P. Pisciotta; D. Rifuggiato; F. Romano; G. Russo; V. Scuderi; C. Stancampiano; A. Tramontana; A. Amato; G.F. Caruso; S. Salamone

A high energy resolution, high dispersive power Thomson Parabola Spectrometer has been developed at INFN-LNS in order to characterize laser-driven beams up to 30- 40 MeV for protons. This device has parallel electric and magnetic field to deflect particles of a certain charge-to-mass ratio onto parabolic traces on the detection plane. Calibration of the deflection sector is crucial for data analysis, namely energy determination of analysed beam, and to evaluate the effective energy limit and resolution. This work reports the study of monochromatic proton beams delivered by the TANDEM accelerator at LNS (Catania) in the energy range between 6 and 12.5 MeV analysed with our spectrometer which allows a precise characterization of the electric and magnetic deflections. Also the energy and the Q/A resolutions and the energy limits have been evaluated proposing a mathematical model that can be used for data analysis, for the experimental set up and for the device scalability for higher energy.


Journal of Instrumentation | 2016

Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

F. Schillaci; M. Maggiore; L. Andò; G.A.P. Cirrone; G. Cuttone; F. Romano; V. Scuderi; Luciano Allegra; A. Amato; G. Gallo; G. Korn; R. Leanza; D. Margarone; G. Milluzzo; G. Petringa

A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first users open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).


Journal of Instrumentation | 2015

Errors and optics study of a permanent magnet quadrupole system

F. Schillaci; M. Maggiore; D. Rifuggiato; G.A.P. Cirrone; G. Cuttone; D. Giove

Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN [2] researchers, in collaboration with SIGMAPHI [3] company in France, to be used as a collection and pre-selection system for laser driven proton beams. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for an accurate study of the beam dynamics and the proper matching with a magnetic selection system already realized [6,7]. Hence, different series of simulations have been used for studying the PMQs harmonic contents and stating the mechanical and magnetic tolerances in order to have reasonable good beam quality downstream the system. In this paper is reported the method used for the analysis of the PMQs errors and its validation. Also a preliminary optics characterization is presented in which are compared the effects of an ideal PMQs system with a perturbed system on a monochromatic proton beams.


Journal of Instrumentation | 2017

Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

G. Milluzzo; V. Scuderi; A.G. Amico; M. Borghesi; G.A.P. Cirrone; G. Cuttone; M. De Napoli; D. Doria; J. Dostal; G. Larosa; R. Leanza; D. Margarone; G. Petringa; J. Pipek; L. Romagnani; F. Romano; F. Schillaci; A. Velyhan

Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.


2ND ELIMED WORKSHOP AND PANEL | 2013

Monte Carlo simulation for the transport beamline

F. Romano; A. Attili; G.A.P. Cirrone; M. Carpinelli; G. Cuttone; S. B. Jia; F. Marchetto; G. Russo; F. Schillaci; V. Scuderi; Antonella Tramontana; A. Varisano

In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.


Journal of Instrumentation | 2017

TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

G. Milluzzo; V. Scuderi; A.G. Amico; G.A.P. Cirrone; G. Cuttone; M. De Napoli; J. Dostal; G. Larosa; R. Leanza; D. Margarone; G. Petringa; J. Pipek; F. Romano; F. Schillaci; A. Velyhan

The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.


Journal of Instrumentation | 2014

The Energy Selection System for the laser-accelerated proton beams at ELI-Beamlines

A. Tramontana; G. Candiano; M. Carpinelli; G.A.P. Cirrone; G. Cuttone; S. Bijan Jia; G. Korn; T Licciardello; M. Maggiore; Lorenzo Manti; D. Margarone; P. Pisciotta; F. Romano; C. Stancampiano; F. Schillaci; V. Scuderi

ELI-Beamlines is one of the four pillars of the ELI (Extreme Light Infrastructure) pan-European project. It will be an ultrahigh-intensity, high repetition-rate, femtosecond laser facility whose main goals are the generation and applications of high-brightness X-ray sources and accelerated charged particles. In particular medical and multidisciplinary applications with laser-accelerated beams are treated by the ELIMED task force, a collaboration between different research institutes. A crucial goal for this network is represented by the design and the realization of a transport beamline able to provide ion beams with suitable characteristics in terms of energy spectrum and angular distribution in order to perform dosimetric tests and biological cell irradiations. A first prototype of transport beamline has been already designed and some magnetic elements are already under construction. In particular, an Energy Selector System (ESS) prototype has been already realized at LNS-INFN. This paper reports about the studies of the ESS properties as, for instance, energy spread and transmission efficiency, carried out using the GEANT4 Monte Carlo code.


Proceedings of SPIE | 2013

ELIMED: a new hadron therapy concept based on laser driven ion beams

G.A.P. Cirrone; D. Margarone; M. Maggiore; Antonello Anzalone; M. Borghesi; S. Bijan Jia; Stepan Bulanov; Sergei V. Bulanov; M. Carpinelli; Salvatore Cavallaro; Mariapompea Cutroneo; G. Cuttone; Marco Favetta; S. Gammino; Ondrej Klimo; Lorenzo Manti; G. Korn; Giuseppe Malfa; Jiri Limpouch; Agatino Musumarra; Ivan Petrović; Jan Prokupek; J. Psikal; Aleksandra Ristić-Fira; Marcella Renis; F. Romano; Francesco Romano; Giuseppe Schettino; F. Schillaci; V. Scuderi

Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility.

Collaboration


Dive into the F. Schillaci's collaboration.

Top Co-Authors

Avatar

G.A.P. Cirrone

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Cuttone

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

V. Scuderi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Maggiore

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Leanza

University of Catania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Larosa

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge