Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Schuller is active.

Publication


Featured researches published by F. Schuller.


Astronomy and Astrophysics | 2009

ATLASGAL - The APEX telescope large area survey of the galaxy at 870 μm

F. Schuller; K. M. Menten; Y. Contreras; F. Wyrowski; P. Schilke; L. Bronfman; T. Henning; C. M. Walmsley; H. Beuther; Sylvain Bontemps; R. Cesaroni; L. Deharveng; Guido Garay; Fabrice Herpin; B. Lefloch; H. Linz; Diego Mardones; V. Minier; S. Molinari; F. Motte; L.-Å. Nyman; V. Revéret; Christophe Risacher; D. Russeil; N. Schneider; L. Testi; T. Troost; T. Vasyunina; M. Wienen; A. Zavagno

Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explore s the southern sky at submillimeter wavelengths, both in continuum and in spectral line emission. Studying continuum emission from interstellar dust is essential to locate the highest densit y regions in the interstellar medium, and to derive their masses, column densities, density structures, and larger scale morpholog ies. In particular, the early stages of (massive) star forma tion are still quite mysterious: only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characteriz ed sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submillimeter wavelengths also represents a pioneering work in preparation for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 µm, with a beam of 19. ′′ 2. Taking advantage of its large field of view (11. ′ 4) and excellent sensitivity, we have started an unbiased survey of the whole Galactic Plane accessible to APEX, with a typical noise level of 50‐70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we have covered ∼95 deg 2 of the Galactic Plane. These data reveal∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the c ompact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact Hii regions or young embedded clusters, thus tracing more evolved stages after star formation has occurred. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M⊙. In this first introductory paper, we show preliminary resul ts from these ongoing observations, and discuss the mid- and long-term perspectives of the survey.


arXiv: Astrophysics of Galaxies | 2009

ATLASGAL - The APEX Telescope Large Area Survey of the Galaxy at 870 microns

F. Schuller; Karl M. Menten; Y. Contreras; F. Wyrowski; P. Schilke; L. Bronfman; T. Henning; C. M. Walmsley; H. Beuther; Sylvain Bontemps; R. Cesaroni; L. Deharveng; Guido Garay; Fabrice Herpin; B. Lefloch; H. Linz; Diego Mardones; V. Minier; S. Molinari; F. Motte; L.-Å. Nyman; V. Reveret; C. Risacher; D. Russeil; N. Schneider; L. Testi; T. Troost; Tatiana Vasyunina; M. Wienen; A. Zavagno

Context. Thanks to its excellent 5100 m high site in Chajnantor, the Atacama Pathfinder Experiment (APEX) systematically explore s the southern sky at submillimeter wavelengths, both in continuum and in spectral line emission. Studying continuum emission from interstellar dust is essential to locate the highest densit y regions in the interstellar medium, and to derive their masses, column densities, density structures, and larger scale morpholog ies. In particular, the early stages of (massive) star forma tion are still quite mysterious: only small samples of high-mass proto-stellar or young stellar objects have been studied in detail so far. Aims. Our goal is to produce a large scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, in order to better understand how and under what conditions star formation takes place. Only a systematic survey of the Galactic Plane can provide the statistical basis for unbiased studies. A well characteriz ed sample of Galactic star-forming sites will deliver an evolutionary sequence and a mass function of high-mass star-forming clumps. Such a systematic survey at submillimeter wavelengths also represents a pioneering work in preparation for Herschel and ALMA. Methods. The APEX telescope is ideally located to observe the inner Milky Way. The recently commissioned Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 µm, with a beam of 19. ′′ 2. Taking advantage of its large field of view (11. ′ 4) and excellent sensitivity, we have started an unbiased survey of the whole Galactic Plane accessible to APEX, with a typical noise level of 50‐70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). Results. As a first step, we have covered ∼95 deg 2 of the Galactic Plane. These data reveal∼6000 compact sources brighter than 0.25 Jy, or 63 sources per square degree, as well as extended structures, many of them filamentary. About two thirds of the c ompact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact Hii regions or young embedded clusters, thus tracing more evolved stages after star formation has occurred. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M⊙. In this first introductory paper, we show preliminary resul ts from these ongoing observations, and discuss the mid- and long-term perspectives of the survey.


Astronomy and Astrophysics | 2009

The Large APEX Bolometer Camera LABOCA

G. Siringo; E. Kreysa; A. Kovács; F. Schuller; A. Weiß; W. Esch; N. Jethava; Gundula Lundershausen; Angel Colin; R. Güsten; K. M. Menten; A. Beelen; Frank Bertoldi; Jeffrey W. Beeman; E. E. Haller

The Large APEX BOlometer CAmera, LABOCA, has been commissioned for operation as a new facility instrument at the Atacama Pathfinder Experiment 12 m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 


Astronomy and Astrophysics | 2010

A gallery of bubbles - The nature of the bubbles observed by Spitzer and what ATLASGAL tells us about the surrounding neutral material

L. Deharveng; F. Schuller; L. D. Anderson; A. Zavagno; F. Wyrowski; K. M. Menten; L. Bronfman; L. Testi; C. M. Walmsley; M. Wienen

{\mu}


The Astrophysical Journal | 2011

A 100 pc ELLIPTICAL AND TWISTED RING OF COLD AND DENSE MOLECULAR CLOUDS REVEALED BY HERSCHEL AROUND THE GALACTIC CENTER

S. Molinari; John Bally; Alberto Noriega-Crespo; M. Compiegne; J.-P. Bernard; D. Paradis; P. Martin; L. Testi; M. J. Barlow; T. J. T. Moore; R. Plume; B. M. Swinyard; A. Zavagno; L. Calzoletti; A. M. di Giorgio; D. Elia; F. Faustini; P. Natoli; M. Pestalozzi; S. Pezzuto; F. Piacentini; G. Polenta; D. Polychroni; E. Schisano; A. Traficante; M. Veneziani; Cara Battersby; Michael G. Burton; Sean J. Carey; Yasuo Fukui

m atmospheric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.


Astronomy and Astrophysics | 2012

Ammonia from cold high-mass clumps discovered in the inner Galactic disk by the ATLASGAL survey

M. Wienen; F. Wyrowski; F. Schuller; K. M. Menten; C. M. Walmsley; L. Bronfman; F. Motte

Context. This study deals with infrared bubbles, the H ii regions they enclose, and triggered massive-star formation on their borders. Aims: We attempt to determine the nature of the bubbles observed by Spitzer in the Galactic plane, mainly to establish if possible their association with massive stars. We take advantage of the very simple morphology of these objects to search for star formation triggered by H ii regions, and to estimate the importance of this mode of star formation. Methods: We consider a sample of 102 bubbles detected by Spitzer-GLIMPSE, and catalogued by Churchwell et al. (2006; hereafter CH06). We use mid-infrared and radio-continuum public data (respectively the Spitzer-GLIMPSE and -MIPSGAL surveys and the MAGPIS and VGPS surveys) to discuss their nature. We use the ATLASGAL survey at 870 μm to search for dense neutral material collected on their borders. The 870 μm data traces the distribution of cold dust, thus of the dense neutral material where stars may form. Results: We find that 86% of the bubbles contain ionized gas detected by means of its radio-continuum emission at 20-cm. Thus, most of the bubbles observed at 8.0 μm enclose H ii regions ionized by O-B2 stars. This finding differs from the earlier CH06 results (~25% of the bubbles enclosing H ii regions). Ninety-eight percent of the bubbles exhibit 24 μm emission in their central regions. The ionized regions at the center of the 8.0 μm bubbles seem to be devoid of PAHs but contain hot dust. PAH emission at 8.0 μm is observed in the direction of the photodissociation regions surrounding the ionized gas. Among the 65 regions for which the angular resolution of the observations is high enough to resolve the spatial distribution of cold dust at 870 μm, we find that 40% are surrounded by cold dust, and that another 28% contain interacting condensations. The former are good candidates for the collect and collapse process, as they display an accumulation of dense material at their borders. The latter are good candidates for the compression of pre-existing condensations by the ionized gas. Thirteen bubbles exhibit associated ultracompact H ii regions in the direction of dust condensations adjacent to their ionization fronts. Another five show methanol masers in similar condensations. Conclusions: Our results suggest that more than a quarter of the bubbles may have triggered the formation of massive objects. Therefore, star formation triggered by H ii regions may be an important process, especially for massive-star formation. Appendices are only available in electronic form at http://www.aanda.org


Astronomy and Astrophysics | 2009

Star formation around RCW 120, the perfect bubble

L. Deharveng; A. Zavagno; F. Schuller; J. Caplan; M. Pomarès; C. De Breuck

Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a similar to 3 x 10(7) M-circle dot ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40 degrees with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x(2) orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.


Astronomy and Astrophysics | 2014

The ATLASGAL survey: a catalog of dust condensations in the Galactic plane

T. Csengeri; J. S. Urquhart; F. Schuller; F. Motte; Sylvain Bontemps; F. Wyrowski; K. M. Menten; L. Bronfman; H. Beuther; Th. Henning; L. Testi; A. Zavagno; M. Walmsley

The APEX Telescope Large Area Survey: The Galaxy (ATLASGAL) is an unbiased continuum survey of the inner Galactic disk at 870 \mu m. It covers +/- 60 deg in Galactic longitude and aims to find all massive clumps at various stages of high-mass star formation in the inner Galaxy, particularly the earliest evolutionary phases. We aim to determine properties such as the gas kinetic temperature and dynamics of new massive cold clumps found by ATLASGAL. Most importantly, we derived their kinematical distances from the measured line velocities. We observed the ammonia (J,K) = (1,1) to (3,3) inversion transitions toward 862 clumps of a flux-limited sample of submm clumps detected by ATLASGAL and extracted 13CO (1-0) spectra from the Galactic Ring Survey (GRS). We determined distances for a subsample located at the tangential points (71 sources) and for 277 clumps whose near/far distance ambiguity is resolved. Most ATLASGAL clumps are cold with rotational temperatures from 10-30 K. They have a wide range of NH3 linewidths, which by far exceeds the thermal linewidth, as well as a broad distribution of high column densities with an NH3 abundance in the range of 5 to 30 * 10^{-8}. We found an enhancement of clumps at Galactocentric radii of 4.5 and 6 kpc. The high detection rate (87%) confirms ammonia as an excellent probe of the molecular content of the massive, cold clumps revealed by ATLASGAL. A clear trend of increasing rotational temperatures and linewidths with evolutionary stage is seen for source samples ranging from 24 \mu m dark clumps to clumps with embedded HII regions. The survey provides the largest ammonia sample of high-mass star forming clumps and thus presents an important repository for the characterization of statistical properties of the clumps and the selection of subsamples for detailed, high-resolution follow-up studies.


Astronomy and Astrophysics | 2011

W43: the closest molecular complex of the Galactic bar?

Q. Nguyen Luong; F. Motte; F. Schuller; N. Schneider; Sylvain Bontemps; P. Schilke; K. M. Menten; Fabian Heitsch; F. Wyrowski; P. Carlhoff; L. Bronfman; T. Henning

We take advantage of the very simple morphology of RCW 120 -- a perfect bubble -- to understand the mechanisms triggering star formation around an HII region and to establish what kind of stars are formed there. We present 870 microns observations of RCW 120, obtained with the APEX-LABOCA camera. These show the distribution of cold dust, and thus of neutral material. We use Spitzer-MIPS observations at 24 and 70 microns to detect the young stellar objects (YSOs) present in this region and to estimate their evolutionary stages. A layer of dense neutral material surrounds the HII region, having been swept up during the regions expansion. This layer has a mass greater than 2000 solar masses and is fragmented, with massive fragments elongated along the ionization front (IF). We measured the 24 microns flux of 138 sources. Of these, 39 are Class I or flat-spectrum YSOs observed in the direction of the collected layer. We show that several triggering mechanisms are acting simultaneously in the swept-up shell, where they form a second generation of stars. No massive YSOs are detected. However, a massive, compact 870 microns core lies adjacent to the IF. A 70 microns source with no 24 microns counterpart is detected at the same position. This source is a likely candidate for a Class 0 YSO. Also at 24 microns, we detect a chain of about ten regularly spaced Class I or flat spectrum sources, parallel to the IF, in the direction of the most massive fragment. We suggest that the formation of these YSOs is the result of Jeans gravitational instabilities in the collected layer. Finally, the 870 microns emission, the 24 microns emission, and the Halpha emission show the existence of an extended and partially ionized photodissociation region around RCW 120.


Monthly Notices of the Royal Astronomical Society | 2013

ATLASGAL - environments of 6.7 GHz methanol masers

J. S. Urquhart; T. J. T. Moore; F. Schuller; F. Wyrowski; K. M. Menten; M. A. Thompson; T. Csengeri; C. M. Walmsley; L. Bronfman; C. König

The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites which can potentially host precursors to high-mass stars. Here we use the ATLASGAL survey covering 420 sq. degree of the Galactic plane at 870 micron; and use the MRE-GLC method to identify the population of embedded sources throughout the inner Galaxy. We identify in total 10952 compact sub-millimeter sources with fluxes above 5 sigma. Completeness tests show that our catalogue is 97% complete above 5 sigma and >99% complete above 7 sigma. We correlate this sample with mid-infrared point source catalogues (MSX at 21.3 micron and WISE at 22 micron) and determine a lower limit of ~33% that are associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with star-formation. Examining the source counts as a function of Galactic longitude we are able to identify the most prominent star forming regions in the Galaxy. From the fraction of the likely massive quiescent clumps (~25%) we estimate a formation time-scale of ~7.25+/-2.50 x 10^4~yr for the deeply embedded phase before the emergence of luminous YSOs. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions.

Collaboration


Dive into the F. Schuller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Omont

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar

Sylvain Bontemps

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Testi

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge