F. Šimkovic
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Šimkovic.
Reports on Progress in Physics | 2012
J. D. Vergados; H. Ejiri; F. Šimkovic
Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements--a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc). Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino-mass scale, if all the signatures of the reaction are searched for in a sufficient number of nuclear isotopes.
Physical Review Letters | 2005
R. Arnold; C. Augier; J. Baker; A. S. Barabash; G. Broudin; V. Brudanin; A. J. Caffrey; E. Caurier; V. Egorov; K. Errahmane; A.I. Etienvre; J.L. Guyonnet; F. Hubert; Ph. Hubert; C. Jollet; S. Jullian; O. Kochetov; V. Kovalenko; S. I. Konovalov; D. Lalanne; F. Leccia; C. Longuemare; G. Lutter; Ch. Marquet; F. Mauger; F. Nowacki; H. Ohsumi; F. Piquemal; J. L. Reyss; R. Saakyan
The NEMO 3 detector, which has been operating in the Frejus underground laboratory since February 2003, is devoted to the search for neutrinoless double beta decay (bb0nu). Half-lives of the two neutrino double beta decays (bb2nu) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7kg of 100Mo and ~1 kg of 82Se. The corresponding lower limits for the half-lives are 4.6 x 10^23 years for 100Mo and 1.0 x10^23 years for 82Se (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are<0.7-2.8 eV for 100Mo and<1.7-4.9 eV for 82Se
Physical Review C | 1999
F. Šimkovic; G. Pantis; J.D. Vergados; Amand Faessler
We have examined the importance of momentum dependent induced nucleon currents such as weak-magnetism and pseudoscalar couplings to the amplitude of neutrinoless double beta decay in the mechanisms of light and heavy Majorana neutrino as well as in that of Majoron emission. Such effects are expected to occur in all nuclear models in the direction of reducing the light neutrino matrix elements by about 30%. To test this we have performed a calculation of the nuclear matrix elements of the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 within the pn-RQRPA. We have found that indeed such corrections vary somewhat from nucleus to nucleus, but in all cases they are greater than 25 percent. In the case of heavy neutrino the effect is much larger (a factor of 3). Combining out results with the best presently available experimental limits on the half-life of the neutrinoless double beta decay we have extracted new limits on the effective neutrino mass (light and heavy) and the effective Majoron coupling constant.
Physical Review C | 1996
G. Pantis; F. Šimkovic; J.D. Vergados; Amand Faessler
We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.
European Physical Journal C | 2010
R. Arnold; C. Augier; J. Baker; A. S. Barabash; A. Basharina-Freshville; M. Bongrand; V. Brudanin; A. J. Caffrey; S. Cebrián; A. Chapon; E. Chauveau; Th. Dafni; Frank F. Deppisch; J. Díaz; D. Durand; V. Egorov; J. J. Evans; R. Flack; K-I. Fushima; I. García Irastorza; X. Garrido; Haley Louise Gomez; B. Guillon; A. Holin; K. Holy; J.J. Horkley; Ph. Hubert; C. Hugon; F. J. Iguaz; N. Ishihara
The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double β decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double β decay by measuring the decay half-life and the electron angular and energy distributions.
Physical Review C | 2009
F. Šimkovic; Vadim Rodin; H. Müther; Markus Stauf; Amand Faessler
A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.
Physical Review C | 2003
Vadim Rodin; P. Vogel; F. Šimkovic; Amand Faessler
The nuclear matrix elements
Physical Review C | 2009
J. Argyriades; R. Arnold; C. Augier; J. Baker; A. S. Barabash; A. Basharina-Freshville; M. Bongrand; G. Broudin; V. Brudanin; A. J. Caffrey; E. Chauveau; Z. Daraktchieva; D. Durand; V. Egorov; N. Fatemi-Ghomi; R. L. Flack; Ph. Hubert; J. Jerie; S. Jullian; M. Kauer; S. King; A. Klimenko; O. Kochetov; S. I. Konovalov; V. Kovalenko; D. Lalanne; T. Lamhamdi; K. Lang; Y. Lemière; C. Longuemare
M^{0\nu}
Physical Review C | 2013
F. Šimkovic; Vadim Rodin; Amand Faessler; P. Vogel
of the neutrinoless double beta decay (
Physical Review Letters | 1997
Amand Faessler; Sergey Kovalenko; F. Šimkovic; J. Schwieger
0\nu\beta\beta