Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Tazzioli is active.

Publication


Featured researches published by F. Tazzioli.


international free electron laser conference | 2003

The SPARC project: a high-brightness electron beam source at LNF to drive a SASE-FEL experiment

D. Alesini; S. Bertolucci; M.E. Biagini; C. Biscari; R. Boni; M. Boscolo; M. Castellano; A. Clozza; G. Di Pirro; A. Drago; A. Esposito; M. Ferrario; V. Fusco; A. Gallo; A. Ghigo; S. Guiducci; M. Incurvati; P. Laurelli; C. Ligi; F. Marcellini; M. Migliorati; C. Milardi; L. Palumbo; L. Pellegrino; M. Preger; P. Raimondi; R. Ricci; C. Sanelli; F. Sgamma; B. Spataro

Abstract The Project Sorgente Pulsata e Amplificata di Radiazione Coerente (SPARC), proposed by a collaboration among ENEA–INFN–CNR–Universita’ di Tor Vergata–INFM–ST, was recently approved by the Italian Government and will be built at LNF. The aim of the project is to promote an R&D activity oriented to the development of a coherent ultra-brilliant X-ray source in Italy. This collaboration has identified a program founded on two main issues: the generation of ultra-high peak brightness electron beams and of resonant higher harmonics in the SASE-FEL process, as presented in this paper.


international free electron laser conference | 2003

Conceptual design of a high-brightness linac for soft X-ray SASE-FEL source

D. Alesini; S. Bertolucci; M.E. Biagini; C. Biscari; R. Boni; M. Boscolo; M. Castellano; A. Clozza; G. Di Pirro; A. Drago; A. Esposito; M. Ferrario; V. Fusco; A. Gallo; A. Ghigo; S. Guiducci; M. Incurvati; P. Laurelli; C. Ligi; F. Marcellini; M. Migliorati; C. Milardi; L. Palumbo; L. Pellegrino; M. Preger; P. Raimondi; R. Ricci; C. Sanelli; F. Sgamma; B. Spataro

Abstract FELs based on SASE are believed to be powerful tools to explore the frontiers of basic sciences, from physics to chemistry to biology. Intense R&D programs have started in the USA and Europe in order to understand the SASE physics and to prove the feasibility of these sources. The allocation of considerable resources in the Italian National Research Plan (PNR) brought about the formation of a CNR–ENEA–INFN–University of Roma “Tor Vergata” study group. A conceptual design study has been developed and possible schemes for linac sources have been investigated, leading to the SPARX proposal. We report in this paper the results of a preliminary start to end simulation concerning one option we are considering based on an S-band normal conducting linac with high-brightness photoinjector integrated in an RF compressor.


Proceedings of the 2005 Particle Accelerator Conference | 2005

The Project Plasmonx for Plasma Acceleration Experiments and A Thomson X-Ray Source at SPARC

D. Alesini; M. Bellaveglia; S. Bertolucci; M.E. Biagini; R. Boni; M. Boscolo; M. Castellano; A. Clozza; G. Di Pirro; A. Drago; A. Esposito; M. Ferrario; L. Ficcadenti; D. Filippetto; V. Fusco; A. Gallo; G. Gatti; A. Ghigo; S. Guiducci; M. Incurvati; C. Ligi; F. Marcellini; M. Migliorati; A. Mostacci; L. Palumbo; L. Pellegrino; M. Preger; R. Ricci; C. Sanelli; M. Serio

We present the status of the project PLASMONX, recently approved by INFN. This project, based on a collaboration between INFN and CNR-IPCF, aims at a long term upgrade of the SPARC system with the goal to develop at LNF an integrated facility for advanced beam-laser-plasma research in the field of advanced acceleration techniques and ultra-bright X-ray radiation sources and related applications. The project, in its first phase, foresees the development at LNF of a High Intensity Laser Laboratory (HILL) whose main component is a 100 TW-class Ti: Sa laser system synchronized to the SPARC photo-injector. Experiments of self-injection and acceleration of electrons into laser driven plasma waves will be conducted at HILL-LNF, early in this first project phase. Eventually an additional beam line will be built in the SPARC bunker in order to transport the SPARC electron beam at an interaction point, where a final focus system will allow to conduct experiments either of laser-beam co-propagation in plasma waves for high gradient acceleration, or experiments of laser-beam head-on collisions to develop a Thomson source of bright ultra-short X-ray radiation pulses, with X-ray energies tunable in the range 20 to 1000 keV and pulse duration from 30 fs to 20 ps. Preliminary simulations of plasma acceleration with self-injection are illustrated, as well as external injection of the SPARC electron beam.


Laser and Particle Beams | 2004

The SPARC/X SASE-FEL Projects

D. Alesini; S. Bertolucci; M.E. Biagini; R. Boni; M. Boscolo; M. Castellano; A. Clozza; G. Di Pirro; A. Drago; A. Esposito; M. Ferrario; V. Fusco; A. Gallo; A. Ghigo; S. Guiducci; M. Incurvati; C. Ligi; F. Marcellini; M. Migliorati; C. Milardi; A. Mostacci; L. Palumbo; L. Pellegrino; M. Preger; P. Raimondi; R. Ricci; C. Sanelli; M. Serio; F. Sgamma; B. Spataro

SPARC and SPARX are two different initiatives toward an Italian Free Electron Laser ~FEL! source operating in the Self Amplified Spontaneous Emission ~SASE! mode, in which several national research institutions are involved. SPARC is a high gain FEL project devoted to provide a source of visible and VUV radiation while exploiting the SASE mechanism. An advanced Photo-Injector system, emittance compensating RF-gun plus a 150 MeV Linac, will inject a high quality e-beam into the undulator to generate high brilliance FEL radiation in the visible region at the fundamental wavelength, ~;500 nm!. The production of flat top drive laser beams, high peak current bunches, and emittance compensation scheme will be investigated together with the generation of higher harmonic radiation in the VUV region. SPARX is the direct evolution of such a high gain SASE FEL toward the 13.5 and 1.5 nm operating wavelengths, at 2.5 GeV. To get the required value for the bunch peak current, Ipeak ’ 2.5 kA, the “hybrid” scheme, RF-compression stage plus magnetic chicane, is analyzed and compared with the more standard double stage of magnetic compression. The two options are reviewed considering the tolerance to the drive laser pulse phase jitter.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1995

Analysis of optical transition radiation emitted by a 1 MeV electron beam and its possible use as diagnostic tool

M. Castellano; M. Ferrario; S. Kulinski; M. Minestrini; P. Patteri; F. Tazzioli; L. Catani; L. Gregorini; S. Tazzari

Abstract The main features of optical transition radiation (OTR) backward emitted by a 1 MeV electron beam crossing a vacuum-to-metal boundary are presented. The possible use of OTR as a diagnostic tool for such a low energy beam is discussed, and some preliminary experimental data are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1993

Commissioning and performance of a low emittance, long pulse electron gun for the superconducting linac LISA

M. Castellano; S. Kulinski; P. Patteri; F. Tazzioli; M. Vescovi; N. Cavallo; F. Cevenini

Abstract A 25 MeV superconducting linear accelerator (LISA) is under construction in the Frascati INFN Laboratories. Here we describe the design and measured pe


bipolar/bicmos circuits and technology meeting | 2003

The Sparc project: a high brightness electron beam source at LNF to drive a SASE-FEL experiment

D. Alesini; S. Bertolucei; M.E. Biagini; C. Biscari; R. Boni; M. Boscolo; M. Castellano; A. Clozza; G. Di Pirro; A. Drago; A. Esposito; M. Ferrario; V. Fusco; A. Gallo; A. Ghigo; S. Guiducci; M. Incurvati; C. Ligi; F. Marcellini; M. Migliorati; C. Milardi; L. Palunibo; L. Pellegrino; M. Preger; P. Raimondi; R. Ricci; C. Sanelli; M. Serio; F. Sgamma; B. Spataro

The Project SPARC (Sorgente Pulsata e Amplificata di Radiazione Coerente), proposed by a collaboration among ENEA-INFN-CNR-Universitadi Roma Tor Vergata- INFM-ST, was recently funded by the Italian Government. The aim of the project is to promote an R&D activity oriented to the development of a coherent ultra-brilliant X-ray source in Italy (SPARX proposal (1)). The SPARC collaboration identified a program based on two main issues: the generation of ultra-high peak brightness electron beams and experimental study of SASE-FEL process with generation of resonant higher harmonics. The SPARC project is being designed in order to encompass the construction of an advanced photo- injector producing a 150-200 MeV beam to drive a SASE-FEL in the optical range. The machine will be built at LNF, inside an underground bunker: it is comprised of an rf gun driven by a Ti:Sa laser, injecting into three SLAC accelerating sections. We foresee conducting investigations on the emittance correction(2) and on the rf compression techniques(3), which are expected to increase the peak current achievable at the injector exit up to kA level, with proper preservation of the transverse emittance. Although the system is expected to drive a FEL experiment, it can be used also to investigate beam physics issues like surface-roughness-induced wake fields, bunch-length measurements in the sub-ps range, emittance degradation in magnetic compressors due to CSR, and Compton backscattering production of sub-ps X-ray pulses.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1993

On line calorimetric measurement of the quality factor of superconducting accelerator cavities

M. Castellano; M. Ferrario; S. Kulinski; M. Minestrini; P. Patteri; F. Tazzioli; L. Catani; S. Tazzari

Abstract A comparative precise method to measure the Q factor of installed superconducting cavities is described. Data taken on the cavities of the 25 MeV s


ieee particle accelerator conference | 2007

Experimental results with the SPARC emittance-meter

D. Alesini; M. Bellaveglia; S. Bertolucci; R. Boni; M. Boscolo; M. Castellano; E. Chiadroni; A. Clozza; L. Cultrera; G. Di Pirro; A. Drago; A. Esposito; M. Ferrario; D. Filippetto; V. Fusco; Alessandro Gallo; G. Gatti; A. Ghigo; M. Incurvati; C. Ligi; M. Migliorati; A. Mostacci; E. Pace; L. Palumbo; L. Pellegrino; R. Ricci; C. Sanelli; Mario Serio; F. Sgamma; B. Spataro

The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive a SASE-FEL in the visible light. As a first stage of the commissioning a complete characterization of the photoinjector has been accomplished with a detailed study of the emittance compensation process downstream the gun-solenoid system with a novel beam diagnostic device, called emittance meter. In this paper we report the results obtained so far including the first experimental observation of the double emittance minimum effect on which is based the optimised matching with the SPARC linac.


Proceedings of the 2005 Particle Accelerator Conference | 2005

The SPARC RF Synchronization System

A. Gallo; D. Alesini; M. Bellaveglia; R. Boni; G. di Pirro; F. Tazzioli

The SPARC project [1] consists in a 150MeV Linac aimed at driving an ondulator for the production of 530nm SASE FEL radiation. A bunch transverse emittance as low as 1mm mrad and a bunch peak current of about 100A are required for this task. The RF voltages in the RF gun and in the 3 S-band accelerating sections have to be kept phase locked within 3ps to the arrival time of the laser pulse on the photocathode to guarantee the required performances. This specification will be reduced to 0.5ps in the phase II of the project when the rectilinear RF compression of the bunch will be tested. The general architecture of the SPARC RF control system together with some bench qualification measurements of the basic components is presented in this paper.

Collaboration


Dive into the F. Tazzioli's collaboration.

Top Co-Authors

Avatar

M. Castellano

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

M. Ferrario

University of Insubria

View shared research outputs
Top Co-Authors

Avatar

R. Boni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

A. Gallo

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

D. Alesini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

A. Drago

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

M. Boscolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

A. Clozza

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

A. Ghigo

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

M. Migliorati

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge