Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Tiezzi is active.

Publication


Featured researches published by F. Tiezzi.


Journal of Dairy Science | 2011

Monitoring of sensory attributes used in the quality payment system of Trentingrana cheese

Giovanni Bittante; Nicola Cologna; A. Cecchinato; M. De Marchi; M. Penasa; F. Tiezzi; I. Endrizzi; F. Gasperi

Trentingrana is a Protected Designation of Origin (PDO) hard cheese manufactured in the valleys of Trento province (eastern Italian Alps) by several small cooperative dairies linked in a consortium. Nine months after production, wheels are delivered to a shared facility, ripened up to 18 mo, and assessed by a panel of 8 experts for 7 sensory attributes; namely, external aspect, rind thickness, paste color, texture, odor, taste, and aroma. The evaluation takes place every 2 mo on wheels sampled within each dairy. Based on the results of the assessment, dairies receive a price premium or penalty depending on a quality index, which is the weighted sum of the scores attributed to each sampled wheel. Sensory scores and quality index of 652 wheels representing 11 dairies and 10 yr of production were analyzed using a model that included fixed effects of dairy, year, and season of production, and first-order interactions between them. The coefficients of determination ranged from 0.50 (texture) to 0.66 (aroma). All factors significantly affected the studied traits, with the exception of interactions between dairy and season of production for texture and external aspect, and between year and season of production for odor. Dairy was the most important source of variation for visually assessed traits (external aspect, rind thickness, paste color, and texture) and for quality index, whereas year of production was the most important for flavor attributes (odor, taste, and aroma). The latter traits were always highly correlated among them and with the quality index, whereas correlations among visually assessed attributes, between them and flavor attributes, and between them and the quality index were more erratic. The sensory evaluation performed by the panel of experts has proven to be a useful tool to define the quality index and address the payment system of Trentingrana cheese, but it has some limitations in correctly describing the sensory profile of cheese and identifying specific defects and possible remedies.


Journal of Dairy Science | 2011

Factors affecting the incidence of first-quality wheels of Trentingrana cheese

Giovanni Bittante; A. Cecchinato; Nicola Cologna; M. Penasa; F. Tiezzi; M. De Marchi

Trentingrana (or Grana Trentino) is a Protected Designation of Origin hard cheese produced in the eastern Italian Alps by small cooperative dairy factories. To obtain the certification of quality, wheels are evaluated at 9±1 mo of ripening and those classified as first quality are revaluated at 18±1 mo. Traditionally, the assessment is based on 2 sensory features: namely, the external aspect of the wheel and the internal texture; the latter is evaluated through the sound produced by beating the wheel with a special hammer. Traits considered in the study were the percentage of first-quality wheels of total wheels examined at 9±1 (QW(9 mo)) and 18±1 (QW(18 mo)) mo of ripening, and their combination [i.e., the percentage of first-quality wheels at 18±1 mo of ripening of the number of wheels evaluated at 9±1 mo (QW(tot))]. The experimental unit was the batch of 2 mo of production of each of 10 cooperative dairy factories from 2002 to 2008. Data were analyzed with a model that included fixed effects of dairy factory, year and season of production, and interactions between dairy factory and year, and dairy factory and season. The coefficients of determination of the models were 0.57, 0.68, and 0.67 for QW(9mo), QW(18 mo), and QW(tot), respectively. All factors significantly influenced the traits, with dairy factory being the most important source of variation, followed by season and year of production. Remarkable differences were found between the best and the worst dairy factory for QW(9 mo) (11.5%), QW(18 mo) (21.1%), and QW(tot) (25.6%). The first 4 yr of production had a negative effect on the percentage of wheels labeled as first quality and QW(tot) decreased from 74 to 64%; nevertheless, a complete recovery was detected in the following years. The season of production strongly influenced the studied traits with the best results in spring and summer, and the worst in autumn and winter. Compared with average, the 3 best dairy factories were smaller, with smaller associated farms, and showed lower variation across years and seasons of production. Results support the relevance of routinely assessing and monitoring the quality of Trentingrana cheese.


Animal | 2013

Heritability and repeatability of milk coagulation properties predicted by mid-infrared spectroscopy during routine data recording, and their relationships with milk yield and quality traits

F. Tiezzi; Denis Pretto; M. De Marchi; M. Penasa; M. Cassandro

The aim of this study was to estimate (co)variance components for milk coagulation properties (MCP) predicted by mid-infrared spectroscopy (MIRS) during routine milk recording, and to assess their relationships with yield and quality traits. A total of 63 470 milk samples from Holstein-Friesian cows were analyzed for MCP, pH and quality characteristics using MIRS. Casein to protein and protein to fat ratios were calculated from information obtained by MIRS. Records were collected across 1 year on 16 089 cows in 345 herds. The model used for genetic analysis included fixed effects of parity and stage of lactation, and random effects of herd-test-day, cow permanent environmental, animal additive genetic and residual. (Co)variance components were assessed in a Bayesian framework using the Gibbs Sampler. Estimates of heritabilities were consistent with those reported in the literature, being moderate for MCP (0.210 and 0.238 for rennet coagulation time (RCT) and curd firmness (a30), respectively), milk contents (0.213 to 0.333) and pH (0.262), and low for somatic cell score (0.093) and yield traits (0.098 to 0.130). Repeatabilities were 0.391 and 0.434 for RCT and a30, respectively, and genetic correlations were generally low, with estimates greater than 0.30 (in absolute value) only for a30 with fat, protein and casein contents. Overall, results suggest that genetic evaluation for MCP predicted by MIRS is feasible at population level, and several repeated measures per cow during a lactation are required to estimate reliable breeding values for coagulation traits.


Journal of Dairy Science | 2012

Genetic parameters for fertility of dairy heifers and cows at different parities and relationships with production traits in first lactation

F. Tiezzi; Christian Maltecca; A. Cecchinato; M. Penasa; Giovanni Bittante

The objectives of this study were to estimate genetic parameters for fertility of Brown Swiss cattle, considering reproductive measures in different parities as different traits, and to estimate relationships between production traits of first lactation and fertility of heifers and first-parity and second-parity cows. Reproductive indicators were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception rate at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield (pMY), lactation milk yield, and lactation length (LL). Data included 37,546 records on heifers, and 24,098 and 15,653 records on first- and second-parity cows, respectively. Cows were reared in 2,035 herds, calved from 1999 to 2007, and were progeny of 527 AI bulls. Gibbs sampling was implemented to obtain (co)variance components using both univariate and bivariate threshold and censored linear sire models. Estimates of heritability for reproductive traits in heifers (0.016 to 0.026) were lower than those in first-parity (0.017 to 0.142) and second-parity (0.026 to 0.115) cows. Genetic correlations for fertility in first- and second-parity cows were very high (>0.920), whereas those between heifers and lactating cows were moderate (0.348 to 0.709). The latter result indicates that fertility in heifers is a different trait than fertility in lactating cows, and hence it cannot be used as robust indicator of cow fertility. Heifer fertility was not related to production traits in first lactation (genetic correlations between -0.215 and 0.251). Peak milk yield exerted a moderate and unfavorable effect on the interval from parturition to first service (genetic correlations of 0.414 and 0.353 after first and second calving, respectively), and a low and unfavorable effect on other fertility traits (genetic correlations between -0.281 and 0.295). Infertility after first calving caused a strong elongation of the lactation, and LL was negatively correlated with fertility of cows after second calving, so that LL can itself be regarded as a measure of fertility. Lactation milk yield depends on both pMY and LL, and, as such, is a cause and consequence of (in)fertility.


Journal of Dairy Science | 2011

Genetic analysis of fertility in the Italian Brown Swiss population using different models and trait definitions

F. Tiezzi; Christian Maltecca; M. Penasa; A. Cecchinato; Y.M. Chang; Giovanni Bittante

The aim of this study was to estimate genetic parameters for fertility and production traits in the Brown Swiss population reared in the Alps (Bolzano-Bozen province, Italy). Fertility indicators were interval from parturition to first service, interval from first service to conception (iFC), and interval from parturition to conception, either expressed as days and as number of potential 21-d estrus cycles (cPF, cFC, and cPC, respectively); number of inseminations to conception; conception rate at first service; and non-return rate at 56 d post-first service. Production traits were peak milk yield, lactation milk yield, lactation length, average lactation protein percentage, and average lactation fat percentage. Data included 71,556 lactations (parities 1 to 9) from 29,582 cows reared in 1,835 herds. Animals calved from 1999 to 2007 and were progeny of 491 artificial insemination bulls. Gibbs sampling and Metropolis algorithms were implemented to obtain (co)variance components using both univariate and bivariate censored threshold and linear sire models. All of the analyses accounted for parity and year-month of calving as fixed effects, and herd, permanent environmental cow, additive genetic sire, and residual as random effects. Heritability estimates for fertility traits ranged from 0.030 (iFC) to 0.071 (cPC). Strong genetic correlations were estimated between interval from parturition to first service and cPF (0.97), and interval from parturition to conception and cPC (0.96). The estimate of heritability for cFC (0.055) was approximately double compared with iFC (0.030), suggesting that measuring the elapsed time between first service and conception in days or potential cycles is not equivalent; this was also confirmed by the genetic correlation between iFC and cFC, which was strong (0.85), but more distant from unity than the other 2 pairs of fertility traits. Genetic correlations between number of inseminations to conception, conception rate at first service, non-return rate at 56 d post-first service, cPF, cFC, and cPC ranged from 0.07 to 0.82 as absolute value. Fertility was unfavorably correlated with production; estimates ranged from -0.26 (cPC with protein percentage) to 0.76 (cPC with lactation length), confirming the genetic antagonism between reproductive efficiency and milk production. Although heritability for fertility is low, the contemporary inclusion of several reproductive traits in a merit index would help to improve performance of dairy cows.


International Strategies and New Developments in Milk Analysis. VI ICAR Reference Laboratory Network Meeting, Proceedings of the ICAR Meeting, Cork, Irish Republic, 28 May 2012. | 2013

Prediction of milk coagulation properties by Fourier Transform Mid-Infrared Spectroscopy (FTMIR) for genetic purposes, herd management and dairy profitability.

M. de Marchi; M. Penasa; F. Tiezzi; V. Toffanin; M. Cassandro; O. Leray


Acta Agriculturae Slovenica | 2012

Study of milk coagulation properties in multibreed Italian dairy herds

A. Sturaro; F. Tiezzi; M. Penasa; M. De Marchi; M. Cassandro


38th International Committee for Animal Recording (ICAR) Meeting | 2012

Prediction of milk coagulation properties by Fourier Transform Mid-Infrared Spectroscopy (FTMIR) for genetic purposes, herd management and dairy profitability

M. De Marchi; M. Penasa; F. Tiezzi; V. Toffanin; M. Cassandro


61st Annual Meeting of the European Association for Animal Production | 2010

Sources of variation of quality traits of herd bulk milk used for Trentingrana cheese production

Nicola Cologna; F. Tiezzi; Massimo De Marchi; M. Penasa; A. Cecchinato; Giovanni Bittante


19th International Symposium Animal Science Days, Primošten, Croatia, 19-23 September 2011. | 2011

Milk yield traits, somatic cell score, milking time and age at calving of pure Holstein versus crossbred cows.

Francesca Malchiodi; M. Penasa; F. Tiezzi; Giovanni Bittante

Collaboration


Dive into the F. Tiezzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Maltecca

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge