Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Ulrich Hartl is active.

Publication


Featured researches published by F. Ulrich Hartl.


Nature | 2011

Molecular chaperones in protein folding and proteostasis

F. Ulrich Hartl; Andreas Bracher; Manajit Hayer-Hartl

Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimers disease and Parkinsons disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.


Cell | 2000

Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine

Clemens Scheufler; Achim Brinker; Gleb Bourenkov; Stefano Pegoraro; Luis Moroder; Hans D. Bartunik; F. Ulrich Hartl; Ismail Moarefi

The adaptor protein Hop mediates the association of the molecular chaperones Hsp70 and Hsp90. The TPR1 domain of Hop specifically recognizes the C-terminal heptapeptide of Hsp70 while the TPR2A domain binds the C-terminal pentapeptide of Hsp90. Both sequences end with the motif EEVD. The crystal structures of the TPR-peptide complexes show the peptides in an extended conformation, spanning a groove in the TPR domains. Peptide binding is mediated by electrostatic interactions with the EEVD motif, with the C-terminal aspartate acting as a two-carboxylate anchor, and by hydrophobic interactions with residues upstream of EEVD. The hydrophobic contacts with the peptide are critical for specificity. These results explain how TPR domains participate in the ordered assembly of Hsp70-Hsp90 multichaperone complexes.


Cell | 2003

Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70

Jason C. Young; Nicholas J. Hoogenraad; F. Ulrich Hartl

The role of cytosolic factors in protein targeting to mitochondria is poorly understood. Here, we show that in mammals, the cytosolic chaperones Hsp90 and Hsp70 dock onto a specialized TPR domain in the import receptor Tom70 at the outer mitochondrial membrane. This interaction serves to deliver a set of preproteins to the receptor for subsequent membrane translocation dependent on the Hsp90 ATPase. Disruption of the chaperone/Tom70 recognition inhibits the import of these preproteins into mitochondria. In yeast, Hsp70 rather than Hsp90 is used in import, and Hsp70 docking is required for the formation of a productive preprotein/Tom70 complex. We outline a novel mechanism in which chaperones are recruited for a specific targeting event by a membrane-bound receptor.


Annual Review of Biochemistry | 2013

Molecular Chaperone Functions in Protein Folding and Proteostasis

Yujin E. Kim; Mark S. Hipp; Andreas Bracher; Manajit Hayer-Hartl; F. Ulrich Hartl

The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.


Cell | 2005

Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli

Michael J. Kerner; Dean Naylor; Yasushi Ishihama; Tobias Maier; Hung-Chun Chang; Anna P. Stines; Costa Georgopoulos; Dmitrij Frishman; Manajit Hayer-Hartl; Matthias Mann; F. Ulrich Hartl

The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.


Cell | 2011

Amyloid-like Aggregates Sequester Numerous Metastable Proteins with Essential Cellular Functions

Heidi Olzscha; Sonya M. Schermann; Andreas Woerner; Stefan Pinkert; Michael H. Hecht; Gian Gaetano Tartaglia; Michele Vendruscolo; Manajit Hayer-Hartl; F. Ulrich Hartl; R Martin Vabulas

Protein aggregation is linked with neurodegeneration and numerous other diseases by mechanisms that are not well understood. Here, we have analyzed the gain-of-function toxicity of artificial β sheet proteins that were designed to form amyloid-like fibrils. Using quantitative proteomics, we found that the toxicity of these proteins in human cells correlates with the capacity of their aggregates to promote aberrant protein interactions and to deregulate the cytosolic stress response. The endogenous proteins that are sequestered by the aggregates share distinct physicochemical properties: They are relatively large in size and significantly enriched in predicted unstructured regions, features that are strongly linked with multifunctionality. Many of the interacting proteins occupy essential hub positions in cellular protein networks, with key roles in chromatin organization, transcription, translation, maintenance of cell architecture and protein quality control. We suggest that amyloidogenic aggregation targets a metastable subproteome, thereby causing multifactorial toxicity and, eventually, the collapse of essential cellular functions.


Cell | 1999

Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains.

Sarah A Teter; Walid A. Houry; Debbie Ang; Thomas Tradler; David Rockabrand; Gunter Fischer; Paul Blum; Costa Georgopoulos; F. Ulrich Hartl

A role for DnaK, the major E. coli Hsp70, in chaperoning de novo protein folding has remained elusive. Here we show that under nonstress conditions DnaK transiently associates with a wide variety of nascent and newly synthesized polypeptides, with a preference for chains larger than 30 kDa. Deletion of the nonessential gene encoding trigger factor, a ribosome-associated chaperone, results in a doubling of the fraction of nascent polypeptides interacting with DnaK. Combined deletion of the trigger factor and DnaK genes is lethal under normal growth conditions. These findings indicate important, partially overlapping functions of DnaK and trigger factor in de novo protein folding and explain why the loss of either chaperone can be tolerated by E. coli.


The EMBO Journal | 2009

Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3

Martin Gamerdinger; Parvana Hajieva; A Murat Kaya; Uwe Wolfrum; F. Ulrich Hartl; Christian Behl

The Hsc/Hsp70 co‐chaperones of the BAG (Bcl‐2‐associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin‐binding protein p62/SQSTM1. The BAG3/BAG1 ratio is also elevated in neurons during aging of the rodent brain, where, consistent with a higher macroautophagy activity, we find increased levels of the autophagosomal marker LC3‐II as well as a higher cathepsin activity. We conclude that the BAG3‐mediated recruitment of the macroautophagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro‐oxidant and aggregation‐prone milieu characteristic of aging.


BMC Genomics | 2008

Protein abundance profiling of the Escherichia coli cytosol.

Yasushi Ishihama; Thorsten Schmidt; Juri Rappsilber; Matthias Mann; F. Ulrich Hartl; Michael J. Kerner; Dmitrij Frishman

BackgroundKnowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale, but proteomic technologies have now advanced to a stage where this information becomes readily accessible.ResultsHere, we describe an experimental scheme to maximize the coverage of proteins identified by mass spectrometry of a complex biological sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell.As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal proteins. Proteins involved in energy metabolism as well as those with binding function were also found in high copy number while proteins annotated with the terms metabolism, transcription, transport, and cellular organization were rare. The barrel-sandwich fold was found to be the structural fold with the highest abundance. Highly abundant proteins are predicted to be less prone to aggregation based on their length, pI values, and occurrence patterns of hydrophobic stretches. We also find that abundant proteins tend to be predominantly essential. Additionally we observe a significant correlation between protein and mRNA abundance in E. coli cells.ConclusionAbundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its properties and functions in the cell. In this way, we provide both data and novel insights into the role of protein concentration in this model organism.


The EMBO Journal | 2006

Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s

Zdravko Dragovic; Sarah A. Broadley; Yasuhito Shomura; Andreas Bracher; F. Ulrich Hartl

Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co‐chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non‐native protein substrate. Here, we show that members of the Hsp70‐related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome‐associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N‐terminal ATPase domain and the ultimate C‐terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70‐mediated re‐folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding.

Collaboration


Dive into the F. Ulrich Hartl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge