F. Xavier Picó
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Xavier Picó.
Ecology | 2004
Anselm Rodrigo; Javier Retana; F. Xavier Picó
It is widely accepted that the postfire recovery in Mediterranean plant communities is carried out by direct regeneration, i.e., the fast recovery of a plant community with the same species pool that it had immediately prior to disturbance. However, there is evidence that not all plant species in the Mediterranean basin survive fire in all situations, suggesting that the direct regeneration process might not apply to all situations. We analyze whether the main combinations of forest tree species (up to 16) of the western Mediterranean basin exhibit a postfire direct regeneration process. Based on data from field surveys, we have developed a stochastic model to predict the medium-term forest dynamics. In general, Quercus species (resprouters) and the pines Pinus halepensis and P. pinaster (seeders that produce abundant seedlings) showed direct regeneration patterns. In contrast, forests of P. nigra, P. sylvestris, and P. pinea (seeders that produce few seedlings) changed to other situations after fire. Thi...
Plant Physiology | 2011
Belén Méndez-Vigo; F. Xavier Picó; Mercedes Ramiro; José M. Martínez-Zapater; Carlos Alonso-Blanco
Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of flowering time, remain mostly unknown. To approach both goals, we characterized the flowering behavior in relation to vernalization of 182 Arabidopsis wild genotypes collected in a native region spanning a broad climatic range. Phenotype-environment association analyses identified strong altitudinal clines (0–2600 m) in seven out of nine flowering-related traits. Altitudinal clines were dissected in terms of minimum winter temperature and precipitation, indicating that these are the main climatic factors that might act as selective pressures on flowering traits. In addition, we used an association analysis approach with four candidate genes, FRIGIDA (FRI), FLOWERING LOCUS C (FLC), PHYTOCHROME C (PHYC), and CRYPTOCHROME2, to decipher the genetic bases of this variation. Eleven different loss-of-function FRI alleles of low frequency accounted for up to 16% of the variation for most traits. Furthermore, an FLC allelic series of six novel putative loss- and change-of-function alleles, with low to moderate frequency, revealed that a broader FLC functional diversification might contribute to flowering variation. Finally, environment-genotype association analyses showed that the spatial patterns of FRI, FLC, and PHYC polymorphisms are significantly associated with winter temperatures and spring and winter precipitations, respectively. These results support that allelic variation in these genes is involved in climatic adaptation.
Genetics | 2008
F. Xavier Picó; Belén Méndez-Vigo; José M. Martínez-Zapater; Carlos Alonso-Blanco
To understand the demographic history of Arabidopsis thaliana within its native geographical range, we have studied its genetic structure in the Iberian Peninsula region. We have analyzed the amount and spatial distribution of A. thaliana genetic variation by genotyping 268 individuals sampled in 100 natural populations from the Iberian Peninsula. Analyses of 175 individuals from 7 of these populations, with 20 chloroplast and nuclear microsatellite loci and 109 common single nucleotide polymorphisms, show significant population differentiation and isolation by distance. In addition, analyses of one genotype from 100 populations detected significant isolation by distance over the entire Iberian Peninsula, as well as among six Iberian subregions. Analyses of these 100 genotypes with different model-based clustering algorithms inferred four genetic clusters, which show a clear-cut geographical differentiation pattern. On the other hand, clustering analysis of a worldwide sample showed a west–east Eurasian longitudinal spatial gradient of the commonest Iberian genetic cluster. These results indicate that A. thaliana genetic variation displays significant regional structure and consistently support the hypothesis that Iberia has been a glacial refugium for A. thaliana. Furthermore, the Iberian geographical structure indicates a complex regional population dynamics, suggesting that this region contained multiple Pleistocene refugia with a different contribution to the postglacial colonization of Europe.
New Phytologist | 2011
Alicia Montesinos‐Navarro; Jennifer Wig; F. Xavier Picó; Stephen J. Tonsor
• Understanding the adaptive basis of life history variation is a central goal in evolutionary ecology. The use of model species enables the combination of molecular mechanistic knowledge with ecological and evolutionary questions, but the study of life history variation in natural environments is required to merge these disciplines. • Here, we tested for clinal variation in life history and associated traits along an environmental and altitudinal gradient in the model species Arabidopsis thaliana. Seventeen natural populations of A. thaliana were geo-referenced in north-eastern Spain on a gradient in which precipitation increases but maximum spring temperature and minimum winter temperature decrease with altitude. • One hundred and eighty-nine genotypes from the 17 populations were grown under uniform controlled conditions. Variations in traits related to biomass allocation, fecundity, phenology and vegetative growth were tested for relationships with the altitude and climatic variables associated with the home sites. Above-ground mass, number of rosette leaves at bolting, developmental time and seed weight increased with the home sites altitude. Root allocation, vegetative growth during winter and number of seeds decreased with altitude. • We suggest that the differences among home sites provide clues to the variation in adaptive strategies associated with the climatic gradient. We compared these results with adaptations and clinal relationships reported for other species and with molecular mechanisms described in Arabidopsis.
Evolution | 2012
Ilkka Kronholm; F. Xavier Picó; Carlos Alonso-Blanco; Jérôme Goudet; J. de Meaux
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study DELAY OF GERMINATION 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using FST and QST comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although QST for seed dormancy is not different from FST for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F2‐populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.
American Journal of Botany | 2008
María B. García; F. Xavier Picó; Johan Ehrlén
Survival and fecundity are basic components of demography and therefore have a strong influence on population dynamics. These two key parameters and their relationship are crucial to understand the evolution of life histories. It remains, however, to be empirically established how life span, fecundity, and population dynamics are linked in different organism groups. We conducted a comparative study based on demographic data sets of 55 populations of 23 perennial herbs for which structured demographic models and among-year natural variation in demographic attributes were available. Life span (from 4 to 128 yr old), estimated by using an algorithm, was inversely correlated with the deviance of the population growth rate from equilibrium as well as with among-year population fluctuations. Temporal variability was greater for short-lived species than for the long-lived ones because fecundity was more variable than survival and relatively more important for population dynamics for the short-lived species. The relationship between life span and population stability suggests that selection for longevity may have played an important role in the life history evolution of plants because of its ability to buffer temporal fluctuations in population size.
Plant Ecology | 2002
F. Xavier Picó; Miquel Riba
Remnant population dynamics permit many plant species to persist timespans extending from decades up to several millenia. The regional-scalepersistence of these plant species strictly depends on the persistence of localpopulations within the region. This type of dynamics can explain the existenceof preglacial relict species in the Mediterranean today. We studied thepopulation dynamics of the long-lived iteroparous herb Ramondamyconi, a preglacial relict species with a fragmented distributioninMediterranean mountains, to evaluate the regional-scale persistence of thespecies. Demographic data were collected from 5 populations placed at LaCerdanya Pyrenean region for up to 6 years. The main life-history features ofthis species are the great longevity of adult plants and the high mortality ofseedlings. Matrix population models were used to investigate its demography.Overall, the population growth rate (λ) ranged from a low of 0.79 to ahigh of 1.06. However, λ did not differ significantly from theequilibrium point, as indicated by their confidence intervals, except for onepopulation in one year. Despite the small between-year variation in λ,variation in climatic conditions at La Cerdanya from year to year explained animportant part of such variation. Elasticity analyses were performed toevaluatethe relative importance of demographic parameters for population growth. Stasistransitions made the greatest contribution to λ. Finally, the long-termdynamics of R. myconi populations were analysed byincorporating environmental stochasticity into the models. Projectionsindicatedthat local R. myconi populations tend to decline over timebut with a long time to extinction, so the persistence ofR. myconi all over La Cerdanya is determined by thepersistence of its remnant local populations.
Evolution | 2012
Alicia Montesinos‐Navarro; F. Xavier Picó; Stephen J. Tonsor
Early life‐history transitions are crucial determinants of lifetime survival and fecundity. Adaptive evolution in early life‐history traits involves a complex interplay between the developing plant and its current and future environments. We examined the plants earliest life‐history traits, dissecting an integrated suite of pregermination processes: primary dormancy, thermal induction of secondary dormancy, and seasonal germination response. We examined genetic variation in the three processes, genetic correlations among the processes, and the scaling of germination phenology with the source populations’ climates. A spring annual life history was associated with genetic propensities toward both strong primary dormancy and heat‐induced secondary dormancy, alone or in combination. Lineages with similar proportions of winter and spring annual life history have both weak primary dormancy and weak thermal dormancy induction. A genetic bias to adopt a spring annual strategy, mediated by rapid loss of primary dormancy and high thermal dormancy induction, is associated with a climatic gradient characterized by increasing temperature in summer and rainfall in winter. This study highlights the importance of considering combinations of multiple genetically based traits along a climatic gradient as adaptive strategies differentiating annual plant life‐history strategies. Despite the genetic‐climatic cline, there is polymorphism for life‐history strategies within populations, classically interpreted as bet hedging in an unpredictable world.
New Phytologist | 2013
Belén Méndez-Vigo; Nasr H. Gomaa; Carlos Alonso-Blanco; F. Xavier Picó
The study of the evolutionary and population genetics of quantitative traits requires the assessment of within- and among-population patterns of variation. We carried out experiments including eight Iberian Arabidopsis thaliana populations (10 individuals per population) in glasshouse and field conditions. We quantified among- and within-population variation for flowering time and for several field life-history traits. Individuals were genotyped with microsatellites, single nucleotide polymorphisms and four well-known flowering genes (FRI, FLC, CRY2 and PHYC). Phenotypic and genotypic data were used to conduct Q(ST)-F(ST) comparisons. Life-history traits varied significantly among- and within-populations. Flowering time also showed substantial within- and among-population variation as well as significant genotype × environment interactions among the various conditions. Individuals bearing FRI truncations exhibited reduced recruitment in field conditions and differential flowering time behavior across experimental conditions, suggesting that FRI contributes to the observed significant genotype × environment interactions. Flowering time estimated in field conditions was the only trait showing significantly higher quantitative genetic differentiation than neutral genetic differentiation values. Overall, our results show that these A. thaliana populations are genetically more differentiated for flowering time than for neutral markers, suggesting that flowering time is likely to be under divergent selection.
Molecular Ecology | 2011
Nasr H. Gomaa; Alicia Montesinos-Navarro; Carlos Alonso-Blanco; F. Xavier Picó
Currently, there exists a limited knowledge on the extent of temporal variation in population genetic parameters of natural populations. Here, we study the extent of temporal variation in population genetics by genotyping 151 genome‐wide SNP markers polymorphic in 466 individuals collected from nine populations of the annual plant Arabidopsis thaliana during 4 years. Populations are located along an altitudinal climatic gradient from Mediterranean to subalpine environments in NE Spain, which has been shown to influence key demographic attributes and life cycle adaptations. Genetically, A. thaliana populations were more variable across space than over time. Common multilocus genotypes were detected several years in the same population, whereas low‐frequency multilocus genotypes appeared only 1 year. High‐elevation populations were genetically poorer and more variable over time than low‐elevation populations, which might be caused by a higher overall demographic instability at higher altitudes. Estimated effective population sizes were low but also showed a significant decreasing trend with increasing altitude, suggesting a deeper impact of genetic drift at high‐elevation populations. In comparison with single‐year samplings, repeated genotyping over time captured substantially higher amount of genetic variation contained in A. thaliana populations. Furthermore, repeated genotyping of populations provided novel information on the genetic properties of A. thaliana populations and allowed hypothesizing on their underlying mechanisms. Therefore, including temporal genotyping programmes into traditional population genetic studies can significantly increase our understanding of the dynamics of natural populations.