Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Ziliotto is active.

Publication


Featured researches published by F. Ziliotto.


Journal of Experimental Botany | 2008

Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP

F. Ziliotto; Maura Begheldo; Angela Rasori; Claudio Bonghi; P. Tonutti

A large-scale transcriptome analysis has been conducted using μPEACH1.0 microarray on nectarine (Prunus persica L. Batsch) fruit treated with 1-methylcyclopropene (1-MCP). 1-MCP maintained flesh firmness but did not block ethylene biosynthesis. Compared with samples at harvest, only nine genes appeared to be differentially expressed when fruit were sampled immediately after treatment, while a total of 90 targets were up- or down-regulated in untreated fruit. The effect of 1-MCP was confirmed by a direct comparison of transcript profiles in treated and untreated fruit after 24 h of incubation with 106 targets differentially expressed. About 30% of these targets correspond to genes involved in primary metabolism and response processes related to ethylene, auxin, and other hormones. In treated fruit, altered transcript accumulation was detected for some genes with a role in ripening-related events such as softening, colour development, and sugar metabolism. A rapid decrease in flesh firmness and an increase in ethylene production were observed in treated fruit maintained for 48 h in air at 20 °C after the end of the incubation period. Microarray comparison of this sample with untreated fruit 24 h after harvest revealed that about 45% of the genes affected by 1-MCP at the end of the incubation period changed their expression during the following 48 h in air. Among these genes, an ethylene receptor (ETR2) and three ethylene-responsive factors (ERF) were present, together with other transcription factors and ethylene-dependent genes involved in quality parameter changes.


BMC Plant Biology | 2012

Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes

F. Ziliotto; Massimiliano Corso; Fabio Massimo Rizzini; Angela Rasori; Alessandro Botton; Claudio Bonghi

BackgroundAuxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison.ResultsThe NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial ‘synergism’ between auxins and ABA, although to a lesser extent.ConclusionsThis study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.


BMC Plant Biology | 2011

A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach

Claudio Bonghi; Livio Trainotti; Alessandro Botton; Alice Tadiello; Angela Rasori; F. Ziliotto; Valerio Zaffalon; Giorgio Casadoro; Angelo Ramina

BackgroundField observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR) was used to study this process.ResultsA comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia) throughout different developmental stages (S1, S2, S3 and S4) evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein), a PR (pathogenesis-related) protein, a prunin and LEA (Late Embryogenesis Abundant) protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively.The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin) or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on.ConclusionsIn this research, genes were identified marking different phases of seed and mesocarp development. The selected genes behaved as good seed markers, while for mesocarp their reliability appeared to be dependent upon developmental and ripening traits. Regarding the cross-talk between seed and pericarp, possible candidate signals were identified among hormones.Further investigations relying upon the availability of whole genome platforms will allow the enrichment of a marker genes repertoire and the elucidation of players other than hormones that are involved in seed-pericarp cross-talk (i.e. hormone peptides and microRNAs).


Plant Science | 2002

Characterization of a major latex protein (MLP) gene down-regulated by ethylene during peach fruitlet abscission☆

Benedetto Ruperti; Claudio Bonghi; F. Ziliotto; Silvana Pagni; Angela Rasori; Serena Varotto; P. Tonutti; James J. Giovannoni; Angelo Ramina

We report the isolation of a new peach gene, Pp-MLP1 , that shows significant similarity to a family of fruit- and flower-specific genes, designated as major latex protein (MLP) homologues. Transcript of Pp-MLP1 highly accumulated in cells of fruit pedicel, similar to lacticifers, adjacent to the abscission zone (non-abscission zone) and, to a lesser extent, in epicotyls, stems and roots, while no accumulation was detected in leaves. In contrast to the MLP homologues isolated so far, the Pp-MLP1 transcript was detected during fruit cells expansion, though its expression appeared unrelated to fruit ripening. Propylene treatment caused a decrease in mRNA accumulation of Pp-MLP1 in all tested tissues. The function of Pp-MLP1, as with all previously described MLP homologues, is unknown. MLPs are associated with fruit and flower development in addition to plant pathogenesis responses. Expression in tissues associated with abscission would be consistent with a role in implementing this aspect of floral development or possibly protective responses to plant pathogens which may infect post-abscission wounds. In addition, the high similarity between proteins encoding by Pp-MLP1 and Csf2 , an MLP gene associated with the early development of cucumber fruit, could suggest an alternativ ed evelopmental role such as cell and tissue expansion. # 2002 Elsevier Science Ireland Ltd. All rights reserved.


Frontiers in Plant Science | 2016

Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

Massimiliano Corso; Alessandro Vannozzi; F. Ziliotto; Mohamed Zouine; Elie Maza; Tommaso T. Nicolato; Nicola Vitulo; Franco Meggio; Giorgio Valle; Mondher Bouzayen; Maren Müller; Sergi Munné-Bosch; Margherita Lucchin; Claudio Bonghi

In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.


Plant Molecular Biology | 2016

The peach HECATE3-like gene FLESHY plays a double role during fruit development

Alessandro Botton; Angela Rasori; F. Ziliotto; Annick Moing; Mickaël Maucourt; Stéphane Bernillon; Catherine Deborde; Anna Petterle; Serena Varotto; Claudio Bonghi

Tight control of cell/tissue identity is essential for a correct and functional organ patterning, an important component of overall fruit development and eventual maturation and ripening. Despite many investigations regarding the molecular determinants of cell identity in fruits of different species, a useful model able to depict the regulatory networks governing this relevant part of fruit development is still missing. Here we described the peach fruit as a system to link the phenotype of a slow ripening (SR) selection to an altered transcriptional regulation of genes involved in determination of mesocarp cell identity providing insight toward molecular regulation of fruit tissue formation. Morpho-anatomical observations and metabolomics analyses performed during fruit development on the reference cultivar Fantasia, compared to SR, revealed that the mesocarp of SR maintained typical immaturity traits (e.g. small cell size, high amino acid contents and reduced sucrose) throughout development, along with a strong alteration of phenylpropanoid contents, resulting in accumulation of phenylalanine and lignin. These findings suggest that the SR mesocarp is phenotypically similar to a lignifying endocarp. To test this hypothesis, the expression of genes putatively involved in determination of drupe tissues identity was assessed. Among these, the peach HEC3-like gene FLESHY showed a strongly altered expression profile consistent with pit hardening and fruit ripening, generated at a post-transcriptional level. A double function for FLESHY in channelling the phenylpropanoid pathway to either lignin or flavour/aroma is suggested, along with its possible role in triggering auxin-ethylene cross talk at the start of ripening.


Plant Science | 2006

The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit

Livio Trainotti; Claudio Bonghi; F. Ziliotto; Dario Zanin; Angela Rasori; Giorgio Casadoro; Angelo Ramina; P. Tonutti


Tree Genetics & Genomes | 2013

Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability

Anurag Dagar; Clara Pons Puig; Cristina Martí; F. Ziliotto; Claudio Bonghi; Haya Friedman; Susan Lurie; Antonio Granell


Functional & Integrative Genomics | 2011

A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance

Vasiliki Falara; George A. Manganaris; F. Ziliotto; Athanasios Manganaris; Claudio Bonghi; Angelo Ramina; Angelos K. Kanellis


Plant Science | 2013

Sensorial, biochemical and molecular changes in Raboso Piave grape berries applying "Double Maturation Raisonnée" and late harvest techniques.

Massimiliano Corso; F. Ziliotto; Fabio Fm Rizzini; Gianni G Teo; G. Cargnello; Claudio Bonghi

Collaboration


Dive into the F. Ziliotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Tonutti

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George A. Manganaris

Cyprus University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge