Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabia Gamboni is active.

Publication


Featured researches published by Fabia Gamboni.


Brain Research | 1991

Increased numbers of sodium channels form along demyelinated axons

John D. England; Fabia Gamboni; S. Rock Levinson

Sodium channels, which are largely localized to the nodes of Ranvier in myelinated axons, appear to form new distributions along demyelinated axons. In this study a sensitive radioimmunoassay (RIA) was used to examine the changes in the total number of sodium channels that occur in nerves experimentally demyelinated in vivo with doxorubicin (adriamycin). The results clearly illustrate the development of an increased number of sodium channels during demyelination, suggesting that this process is associated with the formation of new sodium channels.


Circulation | 2013

Toll-Like Receptor 4–Dependent Microglial Activation Mediates Spinal Cord Ischemia–Reperfusion Injury

Marshall T. Bell; Ferenc Puskas; Viktor A. Agoston; Joseph C. Cleveland; Kirsten A. Freeman; Fabia Gamboni; Paco S. Herson; Xianzhong Meng; Phillip D. Smith; Michael J. Weyant; David A. Fullerton; T. Brett Reece

Background— Paraplegia continues to complicate thoracoabdominal aortic interventions. The elusive mechanism of spinal cord ischemia–reperfusion injury has delayed the development of pharmacological adjuncts. Microglia, the resident macrophages of the central nervous system, can have pathological responses after a variety of insults. This can occur through toll-like receptor 4 (TLR-4) in stroke models. We hypothesize that spinal cord ischemia–reperfusion injury after aortic occlusion results from TLR-4–mediated microglial activation in mice. Methods and Results— TLR-4 mutant and wild-type mice underwent aortic occlusion for 5 minutes, followed by 60 hours of reperfusion when spinal cords were removed for analysis. Spinal cord cytokine production and microglial activation were assessed at 6 and 36 hours after surgery. Isolated microglia from mutant and wild-type mice were subjected to oxygen and glucose deprivation for 24 hours, after which the expression of TLR-4 and proinflammatory cytokines was analyzed. Mice without functional TLR-4 demonstrated decreased microglial activation and cytokine production and had preserved functional outcomes and neuronal viability after thoracic aortic occlusion. After oxygen and glucose deprivation, wild-type microglia had increased TLR-4 expression and production of proinflammatory cytokines. Conclusions— The absence of functional TLR-4 attenuated neuronal injury and microglial activation after thoracic aortic occlusion in mice. Furthermore, microglial upregulation of TLR-4 occurred after oxygen and glucose deprivation, and the absence of functional TLR-4 significantly attenuated the production of proinflammatory cytokines. In conclusion, TLR-4–mediated microglia activation in the spinal cord after aortic occlusion is critical in the mechanism of paraplegia after aortic cross-clamping and may provide targets for pharmacological intervention.


Journal of Trauma-injury Infection and Critical Care | 2016

Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients.

Michael P. Chapman; Ernest E. Moore; Hunter B. Moore; Eduardo Gonzalez; Fabia Gamboni; James G. Chandler; Sanchayita Mitra; Arsen Ghasabyan; Theresa L. Chin; Angela Sauaia; Anirban Banerjee; Christopher C. Silliman

BACKGROUND Trauma-induced coagulopathy (TIC) is associated with a fourfold increased risk of mortality. Hyperfibrinolysis is a component of TIC, but its mechanism is poorly understood. Plasminogen activation inhibitor (PAI-1) degradation by activated protein C has been proposed as a mechanism for deregulation of the plasmin system in hemorrhagic shock, but in other settings of ischemia, tissue plasminogen activator (tPA) has been shown to be elevated. We hypothesized that the hyperfibrinolysis in TIC is not the result of PAI-1 degradation but is driven by an increase in tPA, with resultant loss of PAI-1 activity through complexation with tPA. METHODS Eighty-six consecutive trauma activation patients had blood collected at the earliest time after injury and were screened for hyperfibrinolysis using thrombelastography (TEG). Twenty-five hyperfibrinolytic patients were compared with 14 healthy controls using enzyme-linked immunosorbent assays for active tPA, active PAI-1, and PAI-1/tPA complex. Blood was also subjected to TEG with exogenous tPA challenge as a functional assay for PAI-1 reserve. RESULTS Total levels of PAI-1 (the sum of the active PAI-1 species and its covalent complex with tPA) are not significantly different between hyperfibrinolytic trauma patients and healthy controls: median, 104 pM (interquartile range [IQR], 48–201 pM) versus 115 pM (IQR, 54–202 pM). The ratio of active to complexed PAI-1, however, was two orders of magnitude lower in hyperfibrinolytic patients than in controls. Conversely, total tPA levels (active + complex) were significantly higher in hyperfibrinolytic patients than in controls: 139 pM (IQR, 68–237 pM) versus 32 pM (IQR, 16–37 pM). Hyperfibrinolytic trauma patients displayed increased sensitivity to exogenous challenge with tPA (median LY30 of 66.8% compared with 9.6% for controls). CONCLUSION Depletion of PAI-1 in TIC is driven by an increase in tPA, not PAI-1 degradation. The tPA-challenged TEG, based on this principle, is a functional test for PAI-1 reserves. Exploration of the mechanism of up-regulation of tPA is critical to an understanding of hyperfibrinolysis in trauma. LEVEL OF EVIDENCE Prognostic and epidemiologic study, level II.


Surgery | 2015

Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock

Hunter B. Moore; Ernest E. Moore; Peter J. Lawson; Eduardo Gonzalez; Miguel Fragoso; Alex P. Morton; Fabia Gamboni; Michael P. Chapman; Angela Sauaia; Anirban Banerjee; Christopher C. Silliman

INTRODUCTION Systemic hyperfibrinolysis (accelerated clot degradation) and fibrinolysis shutdown (impaired clot degradation) are associated with increased mortality compared with physiologic fibrinolysis after trauma. Animal models have not reproduced these changes. We hypothesize rodents have a shutdown phenotype that require an exogenous profibrinolytic to differentiate mechanisms that promote or inhibit fibrinolysis. METHODS Fibrinolysis resistance was assessed by thrombelastography (TEG) using exogenous tissue plasminogen activator (tPA) titrations in whole blood. There were 3 experimental groups: (1) tissue injury (laparotomy/bowel crush), (2) shock (hemorrhage to mean arterial pressure of 20 mmHg), and (3) control (arterial cannulation and tracheostomy). Baseline and 30-minute postintervention blood samples were collected, and assayed with TEG challenged with taurocholic acid (TUCA). RESULTS Rats were resistant to exogenous tPA; the percent clot remaining 30 minutes after maximum amplitude (CL30) at 150 ng/mL (P = .511) and 300 ng/mL (P = .931) was similar to baseline, whereas 600 ng/mL (P = .046) provoked fibrinolysis. Using the TUCA challenge, the percent change in CL30 from baseline was increased in tissue injury compared with control (P = .048.), whereas CL30 decreased in shock versus control (P = .048). tPA increased in the shock group compared with tissue injury (P = .009) and control (P = .012). CONCLUSION Rats have an innate fibrinolysis shutdown phenotype. The TEG TUCA challenge is capable of differentiating changes in clot stability with rats undergoing different procedures. Tissue injury inhibits fibrinolysis, whereas shock promotes tPA-mediated fibrinolysis.


Critical Care Medicine | 2012

Nebulized hypertonic saline attenuates acute lung injury following trauma and hemorrhagic shock via inhibition of matrix metalloproteinase-13.

Max V. Wohlauer; Ernest E. Moore; Christopher C. Silliman; Miguel Fragoso; Fabia Gamboni; Jeffrey N. Harr; Frank Accurso; Frank Wright; James B. Haenel; David A. Fullerton; Anirban Banerjee

Objective:We hypothesized that aerosolized inhaled hypertonic saline given at the onset of resuscitation will decrease acute lung injury following hemorrhagic shock, by inhibiting the release of epithelial derived proinflammatory mediators. Design:Animal study. Setting:Animal-care facility procedure room in a medical center. Subjects:Adult male Sprague-Dawley rats. Interventions:Rats underwent hemorrhagic shock followed by 2 hrs of resuscitation and 1 hr of observation. In the study group, nebulized hypertonic saline was delivered at the end of the shock period and after 1 hr and 2 hrs of resuscitation. Measurements and Main Results:Shock provoked acute lung injury, which was attenuated with inhaled hypertonic saline (1.56 ± 0.2 mg protein/mL vs. 0.95 ± 0.3 mg protein/mL bronchoalveolar lavage fluid, shock vs. shock + hypertonic saline, p < .01). Nebulized hypertonic saline reduced inflammation (cytokine-induced neutrophil chemoattractant-1 accumulation in bronchoalveolar lavage fluid 5999 ± 1267 pg/mL vs. 3342 ± 859 pg/mL, shock vs. shock + hypertonic saline, p = .006). Additionally, nebulized hypertonic saline inhibited matrix metalloproteinase-13 accumulation in the bronchoalveolar lavage fluid (1513 ± 337 pg/mL bronchoalveolar lavage fluid vs. 230 ± 19 pg/mL, shock vs. shock + hypertonic saline, p = .009) and pretreatment with a matrix metalloproteinase-13 inhibitor was sufficient to attenuate postshock acute lung injury (1.42 ± 0.09 mg/mL vs. 0.77 ± 0.23 mg/mL bronchoalveolar lavage protein, shock vs. shock + matrix metalloproteinase-13 inhibitor CL-82198, p = .002). Conclusion:Inhaled hypertonic saline attenuates postshock acute lung injury by exerting an anti-inflammatory effect on the pulmonary epithelium, suggesting a new clinical strategy to treat acute lung injury/acute respiratory distress syndrome.


Shock | 2011

Activated Platelets in Heparinized Shed Blood: The “Second-Hit” of Acute Lung Injury in Trauma/Hemorrhagic Shock Models

Jeffrey N. Harr; Ernest E. Moore; Max V. Wohlauer; Miguel Fragoso; Fabia Gamboni; Xiayuan Liang; Anirban Banerjee; Christopher C. Silliman

ABSTRACT The return of heparinized shed blood (SB) in trauma/hemorrhagic shock (T/HS) models remains controversial because of potential anti-inflammatory properties. Although ubiquitous as an anticoagulant, heparin is ineffective on cellular coagulation as an antithrombotic agent. Therefore, we hypothesized that returning heparinized SB would paradoxically enhance acute lung injury (ALI) after T/HS because of the infusion of activated platelets. Sprague-Dawley rats, anesthetized with pentobarbital, underwent laparotomy and hemorrhage-induced shock (MAP of 30 mmHg × 45 min). Animals were resuscitated with a combination of normal saline and returned SB. Shed blood was collected in either 80 U/kg of heparin, 800 U/kg of heparin, or citrate or diluted 1:8 with normal saline. An additional group of animals were pretreated with a platelet P2Y12 receptor antagonist (clopidogrel) before T/HS. Bronchoalveolar lavage, lung myeloperoxidase assays, pulmonary immunofluorescence, and blood smears were conducted. Bronchoalveolar lavage protein increased in animals resuscitated with heparinized SB (T/HS + 80 U/kg Hep 1.62 ± 0.29, T/HS + 800 U/kg Hep 1.30 ± 0.15 vs. T/SS 0.51 ± 0.16 and T/HS Citrate 0.7 ± 0.09) (P < 0.0001). Blood smears and platelet function assays revealed platelet aggregates and increased platelet activation. Animals pretreated with a platelet P2Y12 receptor antagonist were protected from postinjury ALI (P < 0.0001). Animals with return of SB had increased pulmonary polymorphonuclear leukocyte sequestration (P < 0.0001). Pulmonary immunofluorescence demonstrated microthrombi only in the T/HS group receiving heparinized SB (P < 0.0001). The return of heparinized SB functions as a “second hit” to enhance ALI, with activated platelets propagating microthrombi and pulmonary polymorphonuclear leukocyte recruitment.


Surgery | 2012

Isoflurane prevents acute lung injury through ADP-mediated platelet inhibition.

Jeffrey N. Harr; Ernest E. Moore; John R. Stringham; Max V. Wohlauer; Miguel Fragoso; Wilbert L. Jones; Fabia Gamboni; Christopher C. Silliman; Anirban Banerjee

BACKGROUND Growing evidence suggests platelets are essential in posttraumatic, acute lung injury (ALI). Halogenated ethers interfere with the formation of platelet-granulocyte aggregates. The potential benefit of halogenated ethers has not been investigated in models of trauma/hemorrhagic shock (T/HS). Therefore, we hypothesized that isoflurane decreases T/HS-mediated ALI through platelet inhibition. METHODS Sprague-Dawley rats (n = 47) were anesthetized by either pentobarbital or inhaled isoflurane and placed into (1) control, (2) trauma (laparotomy) sham shock, (3) T/HS (mean arterial pressure, 30 mmHg × 45 min), (4) pretreatment with an ADP receptor antagonist, or (5) T/HS with isoflurane initiated during resuscitation groups. ALI was determined by protein and pulmonary immunofluorescence bronchoalveolar lavage (BAL) fluid. Platelet Mapping specifically evaluated thrombin-independent inhibition of the ADP and AA pathways of platelet activation. RESULTS Pretreatment with isoflurane abrogated ALI as measured by both BAL fluid protein and pulmonary immunofluorescence (P < .001). Platelet Mapping revealed specific inhibition of the platelet ADP-pathway with isoflurane (P < .001). Pretreatment with an ADP receptor antagonist decreased ALI to sham levels, confirming that specific platelet ADP inhibition decreases ALI. Isoflurane initiated during resuscitation also decreased ALI (P < .001). CONCLUSION Isoflurane attenuates ALI through an antiplatelet mechanism, in part, through inhibition of the platelet ADP pathway. Isoflurane given postinjury also protects against ALI, and highlights the potential applications of this therapy in various clinical scenarios of ischemia/reperfusion.


PLOS ONE | 2014

Hyperosmolarity Invokes Distinct Anti-Inflammatory Mechanisms in Pulmonary Epithelial Cells: Evidence from Signaling and Transcription Layers

Franklin L. Wright; Fabia Gamboni; Ernest E. Moore; Trevor L. Nydam; Sanchayita Mitra; Christopher C. Silliman; Anirban Banerjee

Hypertonic saline (HTS) has been used intravenously to reduce organ dysfunction following injury and as an inhaled therapy for cystic fibrosis lung disease. The role and mechanism of HTS inhibition was explored in the TNFα and IL-1β stimulation of pulmonary epithelial cells. Hyperosmolar (HOsm) media (400 mOsm) inhibited the production of select cytokines stimulated by TNFα and IL-1β at the level of mRNA translation, synthesis and release. In TNFα stimulated A549 cells, HOsm media inhibited I-κBα phosphorylation, NF-κB translocation into the nucleus and NF-κB nuclear binding. In IL-1β stimulated cells HOsm inhibited I-κBα phosphorylation without affecting NF-κB translocation or nuclear binding. Incubation in HOsm conditions inhibited both TNFα and IL-1β stimulated nuclear localization of interferon response factor 1 (IRF-1). Additional transcription factors such as AP-1, Erk-1/2, JNK and STAT-1 were unaffected by HOsm. HTS and sorbitol supplemented media produced comparable outcomes in all experiments, indicating that the effects of HTS were mediated by osmolarity, not by sodium. While not affecting MAPK modules discernibly in A549 cells, both HOsm conditions inhibit IRF-1 against TNFα or IL-1β, but inhibit p65 NF-kB translocation only against TNFα but not IL-1β. Thus, anti-inflammatory mechanisms of HTS/HOsm appear to disrupt cytokine signals at distinct intracellular steps.


Journal of Trauma-injury Infection and Critical Care | 2014

Mesenteric lymph diversion abrogates 5-lipoxygenase activation in the kidney following trauma and hemorrhagic shock

John R. Stringham; Ernest E. Moore; Fabia Gamboni; Jeffrey N. Harr; Miguel Fragoso; Theresa L. Chin; Caitlin E. Carr; Christopher C. Silliman; Anirban Banerjee

BACKGROUND Early acute kidney injury (AKI) following trauma is associated with multiorgan failure and mortality. Leukotrienes have been implicated both in AKI and in acute lung injury. Activated 5-lipoxygenase (5-LO) colocalizes with 5-LO–activating protein (FLAP) in the first step of leukotriene production following trauma and hemorrhagic shock (T/HS). Diversion of postshock mesenteric lymph, which is rich in the 5-LO substrate of arachidonate, attenuates lung injury and decreases 5-LO/FLAP associations in the lung after T/HS. We hypothesized that mesenteric lymph diversion (MLD) will also attenuate postshock 5-LO–mediated AKI. METHODS Rats underwent T/HS (laparotomy, hemorrhagic shock to a mean arterial pressure of 30 mm Hg for 45 minutes, and resuscitation), and MLD was accomplished via cannulation of the mesenteric duct. Extent of kidney injury was determined via histology score and verified by urinary neutrophil gelatinase-associated lipocalin assay. Kidney sections were immunostained for 5-LO and FLAP, and colocalization was determined by fluorescence resonance energy transfer signal intensity. The end leukotriene products of 5-LO were determined in urine. RESULTS AKI was evident in the T/HS group by derangement in kidney tubule architecture and confirmed by neutrophil gelatinase-associated lipocalin assay, whereas MLD during T/HS preserved renal tubule morphology at a sham level. MLD during T/HS decreased the associations between 5-LO and FLAP demonstrated by fluorescence resonance energy transfer microscopy and decreased leukotriene production in urine. CONCLUSION 5-LO and FLAP colocalize in the interstitium of the renal medulla following T/HS. MLD attenuates this phenomenon, which coincides with pathologic changes seen in tubules during kidney injury and biochemical evidence of AKI. These data suggest that gut-derived leukotriene substrate predisposes the kidney and the lung to subsequent injury.


Proceedings of the National Academy of Sciences of the United States of America | 2018

OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation

Carlo Marchetti; Benjamin Swartzwelter; Fabia Gamboni; Charles P. Neff; Katrin Richter; Tania Azam; Sonia Carta; Isak W. Tengesdal; Travis Nemkov; Angelo D’Alessandro; Curtis Henry; Gerald S. Jones; Scott A. Goodrich; Joseph P. St. Laurent; Terry M. Jones; Curtis L. Scribner; Robert B. Barrow; Roy D. Altman; Damaris Skouras; Marco Gattorno; Veronika Grau; Sabina Janciauskiene; Anna Rubartelli; Leo A. B. Joosten; Charles A. Dinarello

Significance The NLRP3 inflammasome is an intracellular oligomer regulating the activation of caspase-1 for the processing and secretion of IL-1β and IL-18. Although there is growing evidence to substantiate inflammasome inhibition as a therapeutic option for the treatment of inflammatory diseases, to date, there are no approved humans agents. OLT1177, a β-sulfonyl nitrile molecule, shown to be safe in humans, is a selective inhibitor of the NLRP3 inflammasome, with unique properties to reverse the metabolic costs of inflammation and to treat IL-1β– and IL-18–mediated diseases. Activation of the NLRP3 inflammasome induces maturation of IL-1β and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active β-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1β and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation. The molecule showed no effect on the NLRC4 and AIM2 inflammasomes, suggesting specificity for NLRP3. In LPS-stimulated human blood-derived macrophages, OLT1177 decreased IL-1β levels by 60% and IL-18 by 70% at concentrations 100-fold lower in vitro than plasma concentrations safely reached in humans. OLT1177 also reduced IL-1β release and caspase-1 activity in freshly obtained human blood neutrophils. In monocytes isolated from patients with cryopyrin-associated periodic syndrome (CAPS), OLT1177 inhibited LPS-induced IL-1β release by 84% and 36%. Immunoprecipitation and FRET analysis demonstrated that OLT1177 prevented NLRP3-ASC, as well as NLRP3-caspase-1 interaction, thus inhibiting NLRP3 inflammasome oligomerization. In a cell-free assay, OLT1177 reduced ATPase activity of recombinant NLRP3, suggesting direct targeting of NLRP3. Mechanistically, OLT1177 did not affect potassium efflux, gene expression, or synthesis of the IL-1β precursor. Steady-state levels of phosphorylated NF-κB and IkB kinase were significantly lowered in spleen cells from OLT1177-treated mice. We observed reduced IL-1β content in tissue homogenates, limited oxidative stress, and increased muscle oxidative metabolism in OLT1177-treated mice challenged with LPS. Healthy humans receiving 1,000 mg of OLT1177 daily for 8 d exhibited neither adverse effects nor biochemical or hematological changes.

Collaboration


Dive into the Fabia Gamboni's collaboration.

Top Co-Authors

Avatar

Anirban Banerjee

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest E. Moore

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Miguel Fragoso

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jeffrey N. Harr

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Sanchayita Mitra

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

John R. Stringham

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Max V. Wohlauer

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Theresa L. Chin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Angela Sauaia

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge