Fabian Abel
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabian Abel.
international conference on user modeling adaptation and personalization | 2011
Fabian Abel; Qi Gao; Geert-Jan Houben; Ke Tao
How can micro-blogging activities on Twitter be leveraged for user modeling and personalization? In this paper we investigate this question and introduce a framework for user modeling on Twitter which enriches the semantics of Twitter messages (tweets) and identifies topics and entities (e.g. persons, events, products) mentioned in tweets. We analyze how strategies for constructing hashtag-based, entity-based or topic-based user profiles benefit from semantic enrichment and explore the temporal dynamics of those profiles. We further measure and compare the performance of the user modeling strategies in context of a personalized news recommendation system. Our results reveal how semantic enrichment enhances the variety and quality of the generated user profiles. Further, we see how the different user modeling strategies impact personalization and discover that the consideration of temporal profile patterns can improve recommendation quality.
extended semantic web conference | 2011
Fabian Abel; Qi Gao; Geert-Jan Houben; Ke Tao
As the most popular microblogging platform, the vast amount of content on Twitter is constantly growing so that the retrieval of relevant information (streams) is becoming more and more difficult every day. Representing the semantics of individual Twitter activities and modeling the interests of Twitter users would allow for personalization and therewith countervail the information overload. Given the variety and recency of topics people discuss on Twitter, semantic user profiles generated from Twitter posts moreover promise to be beneficial for other applications on the Social Web as well. However, automatically inferring the semantic meaning of Twitter posts is a non-trivial problem. In this paper we investigate semantic user modeling based on Twitter posts. We introduce and analyze methods for linking Twitter posts with related news articles in order to contextualize Twitter activities. We then propose and compare strategies that exploit the semantics extracted from both tweets and related news articles to represent individual Twitter activities in a semantically meaningful way. A large-scale evaluation validates the benefits of our approach and shows that our methods relate tweets to news articles with high precision and coverage, enrich the semantics of tweets clearly and have strong impact on the construction of semantic user profiles for the Social Web.
international conference on user modeling adaptation and personalization | 2012
Qi Gao; Fabian Abel; Geert-Jan Houben; Yong Yu
In this article, we analyze and compare user behavior on two different microblogging platforms: (1) Sina Weibo which is the most popular microblogging service in China and (2) Twitter. Such a comparison has not been done before at this scale and is therefore essential for understanding user behavior on microblogging services. In our study, we analyze more than 40 million microblogging activities and investigate microblogging behavior from different angles. We (i) analyze how people access microblogs and (ii) compare the writing style of Sina Weibo and Twitter users by analyzing textual features of microposts. Based on semantics and sentiments that our user modeling framework extracts from English and Chinese posts, we study and compare (iii) the topics and (iv) sentiment polarities of posts on Sina Weibo and Twitter. Furthermore, (v) we investigate the temporal dynamics of the microblogging behavior such as the drift of user interests over time. Our results reveal significant differences in the microblogging behavior on Sina Weibo and Twitter and deliver valuable insights for multilingual and culture-aware user modeling based on microblogging data. We also explore the correlation between some of these differences and cultural models from social science research.
User Modeling and User-adapted Interaction | 2013
Fabian Abel; Eelco Herder; Geert-Jan Houben; Nicola Henze; Daniel Krause
In order to adapt functionality to their individual users, systems need information about these users. The Social Web provides opportunities to gather user data from outside the system itself. Aggregated user data may be useful to address cold-start problems as well as sparse user profiles, but this depends on the nature of individual user profiles distributed on the Social Web. For example, does it make sense to re-use Flickr profiles to recommend bookmarks in Delicious? In this article, we study distributed form-based and tag-based user profiles, based on a large dataset aggregated from the Social Web. We analyze the completeness, consistency and replication of form-based profiles, which users explicitly create by filling out forms at Social Web systems such as Twitter, Facebook and LinkedIn. We also investigate tag-based profiles, which result from social tagging activities in systems such as Flickr, Delicious and StumbleUpon: to what extent do tag-based profiles overlap between different systems, what are the benefits of aggregating tag-based profiles. Based on these insights, we developed and evaluated the performance of several cross-system user modeling strategies in the context of recommender systems. The evaluation results show that the proposed methods solve the cold-start problem and improve recommendation quality significantly, even beyond the cold-start.
international world wide web conferences | 2012
Fabian Abel; Claudia Hauff; Geert-Jan Houben; Richard Stronkman; Ke Tao
In this paper, we present Twitcident, a framework and Web-based system for filtering, searching and analyzing information about real-world incidents or crises. Twitcident connects to emergency broadcasting services and automatically starts tracking and filtering information from Social Web streams (Twitter) when a new incident occurs. It enriches the semantics of streamed Twitter messages to profile incidents and to continuously improve and adapt the information filtering to the current temporal context. Faceted search and analytical tools allow users to retrieve particular information fragments and overview and analyze the current situation as reported on the Social Web. Demo: http://wis.ewi.tudelft.nl/twitcident/
web science | 2011
Fabian Abel; Qi Gao; Geert-Jan Houben; Ke Tao
Social Web describes a new culture of participation on the Web where more and more people actively participate in publishing and organizing Web content. As part of this culture, people leave a variety of traces when interacting with (other people via) Social Web systems. In this paper, we investigate user modeling strategies for inferring personal interest profiles from Social Web interactions. In particular, we analyze individual micro-blogging activities on Twitter. We compare different strategies for creating user profiles based on the Twitter messages a user has published and study how these profiles change over time. Moreover, we evaluate the quality of the user modeling strategies in the context of personalized recommender systems and show that those strategies which consider the temporal dynamics of the individual profiles allow for the best performance.
acm conference on hypertext | 2012
Fabian Abel; Claudia Hauff; Geert-Jan Houben; Richard Stronkman; Ke Tao
Automatically filtering relevant information about a real-world incident from Social Web streams and making the information accessible and findable in the given context of the incident are non-trivial scientific challenges. In this paper, we engineer and evaluate solutions that analyze the semantics of Social Web data streams to solve these challenges. We introduce Twitcident, a framework and Web-based system for filtering, searching and analyzing information about real-world incidents or crises. Given an incident, our framework automatically starts tracking and filtering information that is relevant for the incident from Social Web streams and Twitter particularly. It enriches the semantics of streamed messages to profile incidents and to continuously improve and adapt the information filtering to the current temporal context. Faceted search and analytical tools allow people and emergency services to retrieve particular information fragments and overview and analyze the current situation as reported on the Social Web. We put our Twitcident system into practice by connecting it to emergency broadcasting services in the Netherlands to allow for the retrieval of relevant information from Twitter streams for any incident that is reported by those services. We conduct large-scale experiments in which we evaluate (i) strategies for filtering relevant information for a given incident and (ii) search strategies for finding particular information pieces. Our results prove that the semantic enrichment offered by our framework leads to major and significant improvements of both the filtering and the search performance. A demonstration is available via: http://wis.ewi.tudelft.nl/twitcident/
international semantic web conference | 2011
Fabian Abel; Ilknur Celik; Geert-Jan Houben; Patrick Siehndel
In the last few years, Twitter has become a powerful tool for publishing and discussing information. Yet, content exploration in Twitter requires substantial effort. Users often have to scan information streams by hand. In this paper, we approach this problem by means of faceted search. We propose strategies for inferring facets and facet values on Twitter by enriching the semantics of individual Twitter messages (tweets) and present different methods, including personalized and context-adaptive methods, for making faceted search on Twitter more effective. We conduct a large-scale evaluation of faceted search strategies, show significant improvements over keyword search and reveal significant benefits of those strategies that (i) further enrich the semantics of tweets by exploiting links posted in tweets, and that (ii) support users in selecting facet value pairs by adapting the faceted search interface to the specific needs and preferences of a user.
international conference on user modeling adaptation and personalization | 2010
Fabian Abel; Nicola Henze; Eelco Herder; Daniel Krause
While browsing the Web, providing profile information in social networking services, or tagging pictures, users leave a plethora of traces In this paper, we analyze the nature of these traces We investigate how user data is distributed across different Web systems, and examine ways to aggregate user profile information Our analyses focus on both explicitly provided profile information (name, homepage, etc.) and activity data (tags assigned to bookmarks or images) The experiments reveal significant benefits of interweaving profile information: more complete profiles, advanced FOAF/vCard profile generation, disclosure of new facets about users, higher level of self-information induced by the profiles, and higher precision for predicting tag-based profiles to solve the cold start problem.
international conference on web engineering | 2011
Fabian Abel; Samur Araujo; Qi Gao; Geert-Jan Houben
In this article, we analyze tag-based user profiles, which result from social tagging activities in Social Web systems and particularly in Flickr, Twitter and Delicious. We investigate the characteristics of tag-based user profiles within these systems, examine to what extent tag-based profiles of individual users overlap between the systems and identify significant benefits of cross-system user modeling by means of aggregating the different profiles of a same user. We present a set of cross-system user modeling strategies and evaluate their performance in generating valuable profiles in the context of tag and resource recommendations in Flickr, Twitter and Delicious. Our evaluation shows that the cross-system user modeling strategies outperform other strategies significantly and have tremendous impact on the recommendation quality in cold-start settings where systems have sparse information about their users.