Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian B. Fahlbusch is active.

Publication


Featured researches published by Fabian B. Fahlbusch.


Journal of Molecular Medicine | 2010

Impaired cell fusion and differentiation in placentae from patients with intrauterine growth restriction correlate with reduced levels of HERV envelope genes

Matthias Ruebner; Pamela L. Strissel; Manuela Langbein; Fabian B. Fahlbusch; David L. Wachter; Florian Faschingbauer; Matthias W. Beckmann; Reiner Strick

One leading cause of perinatal morbidity and mortality is intrauterine growth restriction (IUGR). Several causes for IUGR have been proposed involving cytotrophoblast dysfunction. Envelope genes of the human endogenous retrovirus (HERV)-W (Syncytin-1), -FRD (Syncytin-2), and -P(b) have fusogenic properties, whereas envelope genes of HERV-R, -V1, and -V2 have putative placental functions. All six HERV envelope genes and three known cellular receptors were analyzed for expression in human control and IUGR placentae (n = 38) and in cultured cytotrophoblasts from control and IUGR (n = 8) placentae. All envelope genes demonstrated downregulation in IUGR compared to control placentae tissues, which were confirmed with cultured cytotrophoblasts. Examination of the Syncytin-1 and Syncytin-2 receptors ASCT-1/-2 and MFSD2 showed that MFSD2 was significantly expressed lower in IUGR than in control placentae and cytotrophoblasts. A reduction of Syncytin-1 protein expression was confirmed for IUGR placentae with immunoblotting and paraffin tissue sections. Embedded placental IUGR tissues showed an overall disorganized syncytiotrophoblast layer with fewer nuclei. Cytotrophoblasts from IUGR placentae demonstrated a lower cell fusion index and nuclei per syncytiotrophoblast in vitro. Fusogenic and non-fusogenic envelope genes are dysregulated in IUGR placentae and may contribute to the etiology of growth restriction in utero.


PLOS ONE | 2013

Reduced Syncytin-1 Expression Levels in Placental Syndromes Correlates with Epigenetic Hypermethylation of the ERVW-1 Promoter Region

Matthias Ruebner; Pamela L. Strissel; Arif B. Ekici; Elisabeth Stiegler; Ulf Dammer; Tamme W. Goecke; Florian Faschingbauer; Fabian B. Fahlbusch; Matthias W. Beckmann; Reiner Strick

Terminal differentiation of villous cytotrophoblasts (CT) ends in formation of the multinucleated syncytiotrophoblast representing the fetal-maternal interface. Aberrations during this cell-fusion process are associated with Intrauterine Growth Restriction (IUGR), Preeclampsia (PE) and High Elevated Liver and Low Platelets (HELLP) Syndrome. Syncytin-1, the envelope gene of the human Endogenous Retrovirus ERVW-1, is one of the most important genes involved in cell-fusion and showed decreased gene expression during these pathological pregnancies. The aim of this study was to determine the methylation pattern of the entire promoter of ERVW-1 and to correlate these findings with the expression profile of Syncytin-1 in the placental syndromes. 14 isolated villous cytotrophoblasts from control (n = 3), IUGR (n = 3), PE (n = 3), PE/IUGR (n = 3) and HELLP/IUGR (n = 2) placentae were used to determine the mean methylation level (ML) for the ERVW-1 promoter region. ML rose significantly from 29% in control CTs to 49% in IUGR, 53% in PE, 47% in PE/IUGR and 64% in HELLP/IUGR indicating an epigenetic down-regulation of Syncytin-1 by promoter hypermethylation. DNA demethylation of the trophoblast like cell lines BeWo, JEG-3 and JAR with 5-AZA-2′desoxycytidine (AZA) showed an increased Syncytin-1 expression and fusion ability in all cell lines. Promoter activity of the 5′LTR could be inhibited by hypermethylation 42-fold using a luciferase based reporter-gene assay. Finally overexpression of the methyltransferases DNMT3a and LSH could be responsible for a decreased Syncytin-1 expression by promoter hypermethylation of ERVW-1. Our study linked decreased Syncytin-1 expression to an epigenetic hypermethylation of the entire promoter of ERVW-1. Based on our findings we are predicting a broad aberrant epigenetic DNA-methylation pattern in pathological placentae affecting placentogenesis, but also the development of the fetus and the mother during pregnancy.


PLOS ONE | 2011

Early and Late Postnatal Myocardial and Vascular Changes in a Protein Restriction Rat Model of Intrauterine Growth Restriction

Carlos Menendez-Castro; Fabian B. Fahlbusch; Nada Cordasic; Kerstin Amann; Kathrin Münzel; Christian Plank; Rainer Wachtveitl; Wolfgang Rascher; Karl F. Hilgers; Andrea Hartner

Intrauterine growth restriction (IUGR) is a risk factor for cardiovascular disease in later life. Early structural and functional changes in the cardiovascular system after IUGR may contribute to its pathogenesis. We tested the hypothesis that IUGR leads to primary myocardial and vascular alterations before the onset of hypertension. A rat IUGR model of maternal protein restriction during gestation was used. Dams were fed low protein (LP; casein 8.4%) or isocaloric normal protein diet (NP; casein 17.2%). The offspring was reduced to six males per litter. Immunohistochemical and real-time PCR analyses were performed in myocardial and vascular tissue of neonates and animals at day 70 of life. In the aortas of newborn IUGR rats expression of connective tissue growth factor (CTGF) was induced 3.2-fold. At day 70 of life, the expression of collagen I was increased 5.6-fold in aortas of IUGR rats. In the hearts of neonate IUGR rats, cell proliferation was more prominent compared to controls. At day 70 the expression of osteopontin was induced 7.2-fold. A 3- to 7-fold increase in the expression of the profibrotic cytokines TGF-β and CTGF as well as of microfibrillar matrix molecules was observed. The myocardial expression and deposition of collagens was more prominent in IUGR animals compared to controls at day 70. In the low-protein diet model, IUGR leads to changes in the expression patterns of profibrotic genes and discrete structural abnormalities of vessels and hearts in adolescence, but, with the exception of CTGF, not as early as at the time of birth. Invasive and non-invasive blood pressure measurements confirmed that IUGR rats were normotensive at the time point investigated and that the changes observed occurred independently of an increased blood pressure. Hence, altered matrix composition of the vascular wall and the myocardium may predispose IUGR animals to cardiovascular disease later in life.


Inflammatory Bowel Diseases | 2015

miRNA-26b Overexpression in Ulcerative Colitis-associated Carcinogenesis.

Natalya Benderska; Anna-Lena Dittrich; Sabine Knaup; Tilman T. Rau; Clemens Neufert; Sven Wach; Fabian B. Fahlbusch; Manfred Rauh; Ralph M. Wirtz; Abbas Agaimy; Swetha Srinivasan; Vijayalakshmi Mahadevan; Petra Rümmele; Emmanouela Rapti; Maria Gazouli; Arndt Hartmann; Regine Schneider-Stock

Background:Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. Methods:Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh–frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. Results:miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. Conclusions:We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.


Reproductive Biology and Endocrinology | 2012

Corticotropin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts

Fabian B. Fahlbusch; Matthias Ruebner; Gudrun Volkert; Ramona Offergeld; Andrea Hartner; Carlos Menendez-Castro; Reiner Strick; Manfred Rauh; Wolfgang Rascher; Jörg Dötsch

BackgroundThe placental syncytiotrophoblast is the major source of maternal plasma corticotropin-releasing hormone (CRH) in the second half of pregnancy. Placental CRH exerts multiple functions in the maternal organism: It induces the adrenal secretion of cortisol via the stimulation of adrenocorticotropic hormone, regulates the timing of birth via its actions in the myometrium and inhibits the invasion of extravillous trophoblast cells in vitro. However, the auto- and paracrine actions of CRH on the syncytiotrophoblast itself are unknown. Intrauterine growth restriction (IUGR) is accompanied by an increase in placental CRH, which could be of pathophysiological relevance for the dysregulation in syncytialisation seen in IUGR placentas.MethodsWe aimed to determine the effect of CRH on isolated primary trophoblastic cells in vitro. After CRH stimulation the trophoblast syncytialisation rate was monitored via syncytin-1 gene expression and beta-hCG (beta-human chorionic gonadotropine) ELISA in culture supernatant. The expression of the IUGR marker genes leptin and 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD2) was measured continuously over a period of 72 h. We hypothesized that CRH might attenuate syncytialisation, induce leptin, and reduce 11beta-HSD2 expression in primary villous trophoblasts, which are known features of IUGR.ResultsCRH did not influence the differentiation of isolated trophoblasts into functional syncytium as determined by beta-hCG secretion, albeit inducing syncytin-1 expression. Following syncytialisation, CRH treatment significantly increased leptin and 11beta-HSD2 expression, as well as leptin secretion into culture supernatant after 48 h.ConclusionThe relevance of CRH for placental physiology is underlined by the present in vitro study. The induction of leptin and 11beta-HSD2 in the syncytiotrophoblast by CRH might promote fetal nutrient supply and placental corticosteroid metabolism in the phase before labour induction.


Pediatric Research | 2009

Placental 11β-HSD2 Gene Expression at Birth Is Inversely Correlated With Growth Velocity in the First Year of Life After Intrauterine Growth Restriction

Anja Tzschoppe; Ellen Struwe; Holger Blessing; Fabian B. Fahlbusch; Gisela Liebhaber; Helmuth G. Dörr; Manfred Rauh; Wolfgang Rascher; Tamme W. Goecke; R. L. Schild; Ekkehard Schleussner; Cerrie Scheler; Axel Hübler; Peter Dahlem; Jörg Dötsch

Intrauterine growth restriction (IUGR) is associated with an increased risk for short stature and diseases in adulthood thought to be inflicted by fetal programming. We hypothesized that placental endocrine systems involved in perinatal growth might also play a role in postnatal growth after IUGR. In a prospective controlled multicenter study, placental gene expression of IGF-binding protein-1 (IGFBP-1), leptin and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) were measured in 14 IUGR infants and 15 children born appropriate for gestational age (AGA) proven by serial ultrasound examinations. Postnatally, IUGR infants experienced a significantly higher growth velocity than AGA neonates (at 1 y: p = 0.001). Gene expression of 11β-HSD2 at birth correlated positively with birth length (r = 0.55, p = 0.04) and inversely with growth velocity in the first year of life (r = −0.69, p = 0.01) in the IUGR, but not in the AGA group. There was no correlation between gene expression of placental IGFBP-1, leptin and birth weight, length and growth velocity during the first year of life. AGA infants showed significantly higher concentrations of cortisone in venous cord blood after birth (p = 0.02) as a surrogate of a higher 11β-HSD2 activity in the fetoplacental unit. In conclusion, placental 11β-HSD2 gene expression might predict postnatal growth in IUGR.


Molecular Cancer | 2014

Thymoquinone-induced conformational changes of PAK1 interrupt prosurvival MEK-ERK signaling in colorectal cancer

El-Baba Co; Vijayalakshmi Mahadevan; Fabian B. Fahlbusch; Suma Mohan S; Tilman T. Rau; Hala Gali-Muhtasib; Regine Schneider-Stock

BackgroundThymoquinone (TQ) was shown to reduce tumor growth in several cancer models both in vitro and in vivo. So far only a few targets of TQ, including protein kinases have been identified. Considering that kinases are promising candidates for targeted anticancer therapy, we studied the complex kinase network regulated by TQ.MethodsNovel kinase targets influenced by TQ were revealed by in silico analysis of peptide array data obtained from TQ-treated HCT116wt cells. Western blotting and kinase activity assays were used to determine changes in kinase expression patterns in colorectal cancer cells (HCT116wt, DLD-1, HT29). To study the viability/apoptotic effects of combining the PAK1 inhibitor IPA-3 and TQ, crystal violet assay and AnnexinV/PI staining were employed. Interactions between PAK1 and ERK1/2 were investigated by co-immunoprecipitation and modeled by docking studies. Transfection with different PAK1 mutants unraveled the role of TQ-induced changes in PAK1 phosphorylation and TQ´s effects on PAK1 scaffold function.ResultsOf the 104 proteins identified, 50 were upregulated ≥2 fold by TQ and included molecules in the AKT-MEK-ERK1/2 pathway. Oncogenic PAK1 emerged as an interesting TQ target. Time-dependent changes in two PAK1 phosphorylation sites generated a specific kinase profile with early increase in pPAKThr212 followed by late increase in pPAKThr423. TQ induced an increase of pERK1/2 and triggered the early formation of an ERK1/2-PAK1 complex. Modeling confirmed that TQ binds in the vicinity of Thr212 accompanied by conformational changes in ERK2-PAK1 binding. Transfecting the cells with the non-phosphorylatable mutant T212A revealed an increase of pPAKThr423 and enhanced apoptosis. Likewise, an increase in apoptosis was observed in cells transfected with both the kinase-dead K299R mutant and PAK1 siRNA. Using structural modeling we suggest that TQ interferes also with the kinase domain consequently disturbing its interaction with pPAKThr423, finally inhibiting MEK-ERK1/2 signaling and disrupting its prosurvival function. pERK1/2 loss was also validated in vivo.ConclusionsOur study shows for the first time that the small molecule TQ directly binds to PAK1 changing its conformation and scaffold function. Because TQ affects the central RAF/MEK/ERK1/2 pathway, the combination of TQ with targeted therapies is worth considering for future anticancer treatments.


Steroids | 2013

Combined quantification of corticotropin-releasing hormone, cortisol-to-cortisone ratio and progesterone by liquid chromatography-Tandem mass spectrometry in placental tissue.

Fabian B. Fahlbusch; Matthias Ruebner; Wolfgang Rascher; Manfred Rauh

With mid-gestation the production of placental corticotropin-releasing hormone (CRH) starts to steadily increase. The fetal peptide CRH excerts direct functions at the feto-maternal interface (vasodilatation, timing of birth) via its interaction with progesterone and indirectly ensures maturation and growth of fetal organ systems for delivery by driving fetal cortisol production via its induction of adrenocorticotropic hormone release. This feedback loop is tightly controlled by the amount of enzymatic cortisol/cortisone turnover in the placental syncytiotrophoblast by 11β-hydroxy-steroid dehydrogenase type 2 (11β-HSD2). Traditionally, placental tissue hormones have been quantified by immunological methods (e.g. RIA or ELISA), which have the drawback of possible cross-reactivity and tissue perturbations. Most importantly, it is not possible to quantify CRH and steroid hormones, such as cortisol, cortisone and progesterone together in the same sample with these methods. Hence, we aimed to develop and validate a quantitative mass spectrometry (MS) method for multi-modal quantification of these placental hormones: While CRH was readily detectable throughout the placenta, the placental levels of progesterone and especially cortisol and cortisone were higher at the placental base facing the maternal side. The HPLC-MS/MS procedure showed excellent selectivity and sufficient limit of quantification in placental tissue homogenates to allow for simultaneous detection of CRH, cortisol and cortisone, and progesterone.


Placenta | 2013

The tumor suppressor gastrokine-1 is expressed in placenta and contributes to the regulation of trophoblast migration

Fabian B. Fahlbusch; Matthias Ruebner; Hanna Huebner; Gudrun Volkert; C. Zuern; F. Thiel; M. Koch; Carlos Menendez-Castro; David L. Wachter; Andrea Hartner; Wolfgang Rascher

INTRODUCTION Gastrokine-1 (GKN1) is a secreted auto-/paracrine protein, described to be expressed in the gastric mucosa. In gastric cancers GKN1 expression is commonly down-regulated. While current research focusses on the exploration of tumor-suppressive properties of GKN1 with regard to its potential clinical use in the treatment of gastroenterologic tumor disease, nothing is known about GKN1 expression and function in other organ systems. We investigated GKN1 expression in placental tissue and cells. MATERIALS AND METHODS GKN1 was localized using immunohistochemistry in first and third trimester placental tissue, hydatidiform moles and various gestational trophoblastic neoplasias. We determined the expression of GKN1 in immunomagnetic bead-separated term placental cells and in choriocarcinoma cell lines. The role of GKN1 for JEG-3 migration was studied using live cell imaging. E-cadherin, MMP-2 and -9, TIMP-1 and -2, as well as urokinase (uPA) expression levels were determined. RESULTS GKN1 is expressed in healthy third trimester placentas. Its expression is specifically limited to the extravillous trophoblast (EVT). GKN1 expression is significantly reduced in choriocarcinoma cell lines and gestational trophoblastic neoplasias. GKN1 attenuates the migration of JEG-3 choriocarcinoma cells in vitro, possibly via AKT-mediated induction of E-cadherin. GKN1 treatment reduced MMP-9 expression in JEG-3. DISCUSSION Besides its role in gastric physiology our results clearly indicate regulatory functions of GKN1 in the EVT at the feto-maternal interface during pregnancy. Based on our findings in the JEG-3 choriocarcinoma cell line, an auto-/paracrine role of GKN1 for EVT motility and villous anchorage at the basal plate is conceivable. Thus, the tumor suppressor GKN1 is expressed in placental EVT and might contribute to the regulation of EVT migration/invasion.


Pediatric Research | 2014

Impaired myocardial performance in a normotensive rat model of intrauterine growth restriction.

Carlos Menendez-Castro; Okan Toka; Fabian B. Fahlbusch; Nada Cordasic; Rainer Wachtveitl; Karl F. Hilgers; Wolfgang Rascher; Andrea Hartner

Background:Intrauterine growth restriction (IUGR) is an important risk factor for cardiovascular disease. Previous studies revealed altered myocardial matrix composition after IUGR. We hypothesized that IUGR is accompanied by compromised myocardial performance independently from arterial hypertension.Methods:IUGR was induced in Wistar rats by maternal protein restriction, and hearts of male offspring were studied using echocardiography, immunohistochemistry, real-time PCR, and western blot analysis.Results:At day 70 of life, in the absence of arterial hypertension (mean arterial blood pressure: 101.3 ± 7.1 mmHg in IUGR vs. 105.3 ± 4.6 mmHg in controls, not significant (NS)), echocardiography showed a reduced contractility (ejection fraction: 65.4 ± 1.8% in IUGR vs. 82.2 ± 1.5% in controls, P < 0.001) of a more distensible myocardium in IUGR rats. Altered expression patterns of myosin chains and titin isoforms and increased expression levels of atrial natriuretic peptide, Na/K-ATPase, and β-adrenergic receptor 1 were detected. A higher number of cardiac fibroblasts and vascular cross-sections were observed in IUGR rats, accompanied by elevated expression of hypoxia inducible factor 1 target genes, such as vascular endothelial growth factor and its receptors.Conclusion:We observed a blood pressure–independent impairment of myocardial function after IUGR, which possibly favors cardiovascular disease later in life. Some IUGR-induced myocardial changes (e.g., sarcomeric components) may partly explain the compromised cardiac performance, whereas others (e.g., elevated vascular supply) reflect compensatory mechanisms.

Collaboration


Dive into the Fabian B. Fahlbusch's collaboration.

Top Co-Authors

Avatar

Wolfgang Rascher

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Andrea Hartner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Matthias Ruebner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Carlos Menendez-Castro

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Hanna Huebner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Matthias W. Beckmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Gudrun Volkert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Manfred Rauh

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ines Marek

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Nada Cordasic

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge