Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian Grammes is active.

Publication


Featured researches published by Fabian Grammes.


Nature | 2016

The Atlantic salmon genome provides insights into rediploidization

Sigbjørn Lien; Ben F. Koop; Simen Rød Sandve; Jason R. Miller; Matthew Kent; Torfinn Nome; Torgeir R. Hvidsten; Jong Leong; David R. Minkley; Aleksey V. Zimin; Fabian Grammes; Harald Grove; Arne B. Gjuvsland; Brian Walenz; Russell A. Hermansen; Kristian R. von Schalburg; Eric B. Rondeau; Alex Di Genova; Jeevan Karloss Antony Samy; Jon Olav Vik; Magnus Dehli Vigeland; Lis Caler; Unni Grimholt; Sissel Jentoft; Dag Inge Våge; Pieter J. de Jong; Thomas Moen; Matthew Baranski; Yniv Palti; Douglas W. Smith

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


PLOS ONE | 2013

Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L.).

Fabian Grammes; Felipe E. Reveco; Odd Helge Romarheim; Thor Landsverk; Liv Torunn Mydland; Margareth Øverland

Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM) in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE). In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM), a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU), Kluyveromyces marxianus (KM), Saccharomyces cerevisiae (SC) or the microalgae Chlorella vulgaris (CV). Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects.


Genome Biology | 2017

Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification

Fiona M Robertson; Manu Kumar Gundappa; Fabian Grammes; Torgeir R. Hvidsten; Anthony K. Redmond; Sigbjørn Lien; Samuel A.M. Martin; Peter W. H. Holland; Simen Rød Sandve; Daniel J. Macqueen

BackgroundThe functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a ‘time-lag’ model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, ‘lineage-specific ohnologue resolution’ (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event.ResultsUsing cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than ‘older’ ohnologues that began diverging in the salmonid ancestor.ConclusionsLORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear ‘explosively’, but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.


Journal of Fish Diseases | 2009

Increased survival by feeding tetradecylthioacetic acid during a natural outbreak of heart and skeletal muscle inflammation in S0 Atlantic salmon, Salmo salar L.

H. Alne; Magny S. Thomassen; Harald Takle; B. F. Terjesen; Fabian Grammes; M. Oehme; S. Refstie; Trygve Sigholt; Rolf K. Berge; Kjell-Arne Rørvik

We have previously documented increased survival by feeding tetradecylthioacetic acid (TTA) during a natural outbreak of infectious pancreatic necrosis in post-smolt S1 Atlantic salmon. The aim of the present study was to test the effects of dietary TTA in S0 smolt at a location where fish often experience natural outbreaks of heart and skeletal muscle inflammation (HSMI) during their first spring at sea. The experimental groups were fed a diet supplemented with 0.25% TTA for a 6-week period prior to a natural outbreak of HSMI in May 2007. Relative percent survival for the groups fed TTA was 45% compared with control diets, reducing mortality from 4.7% to 2.5%. Expression of genes related to lipid oxidation was higher in cardiac ventricles from salmon fed TTA compared with controls. In addition, salmon fed TTA had periodically reduced levels of plasma urea, and increased cardiosomatic index and growth. Reduced mortality and increased growth after administration of TTA may be related to a combination of anti-inflammatory effects, and an altered metabolic balance with better protein conservation because of increased lipid degradation.


PLOS ONE | 2016

Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil.

Itziar Estensoro; Gabriel F. Ballester-Lozano; Laura Benedito-Palos; Fabian Grammes; Juan Antonio Martos-Sitcha; Liv Torunn Mydland; Josep A. Calduch-Giner; Juan Fuentes; Vasileios Karalazos; Álvaro Ortiz; Margareth Øverland; Ariadna Sitjà-Bobadilla; Jaume Pérez-Sánchez

There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.


BMC Genomics | 2017

SalmoBase: an integrated molecular data resource for Salmonid species

Jeevan Karloss Antony Samy; Teshome Dagne Mulugeta; Torfinn Nome; Simen Rød Sandve; Fabian Grammes; Matthew Kent; Sigbjørn Lien; Dag Inge Våge

BackgroundSalmonids are ray-finned fishes which constitute 11 genera and at least 70 species including Atlantic salmon, whitefishes, graylings, rainbow trout, and char. The common ancestor of all Salmonidae experienced a whole genome duplication (WGD) ~80 million years ago, resulting in an autotetraploid genome. Genomic rediplodization is still going on in salmonid species, providing an unique system for studying evolutionary consequences of whole genome duplication. In recent years, high quality genome sequences of Atlantic salmon and Rainbow trout has been established, due to their scientific and commercial values. In this paper we introduce SalmoBase (http://www.salmobase.org/), a tool for making molecular resources for salmonids public available in a framework of visualizations and analytic tools.ResultsSalmoBase has been developed as a part of the ELIXIR.NO project. Currently, SalmoBase contains molecular resources for Atlantic salmon and Rainbow trout. Data can be accessed through BLAST, Genome Browser (GBrowse), Genetic Variation Browser (GVBrowse) and Gene Expression Browser (GEBrowse).ConclusionsTo the best of our knowledge, SalmoBase is the first database which integrates salmonids data and allow users to study salmonids in an integrated framework. The database and its tools (e.g., comparative genomics tools, synteny browsers) will be expanded as additional public resources describing other Salmonidae genomes become available.


Journal of Fish Diseases | 2012

Tetradecylthioacetic acid modulates cardiac transcription in Atlantic salmon, Salmo salar L., suffering heart and skeletal muscle inflammation

Fabian Grammes; Kjell-Arne Rørvik; Takle H

Heart and skeletal muscle inflammation (HSMI) is a disease causing considerable mortality in farmed Atlantic salmon. We have previously reported that pre-feeding of tetradecylthioacetic acid (TTA) reduces the mortality during a natural outbreak of HSMI. In the present paper we show that in the cardiac ventricle, during HSMI infection, pre-feeding TTA increases the expression of the immune genes: TNFα, VCAM-1, IgM and CD8α. We also show that TTA increases the cardiosomatic index potentially by elevating cardiomyogenesis through activation of the cardiac transcription factors MEF2C and Nkx2.5. Using the recently published genomic sequence of a HSMI associated piscine reovirus (PRV), we could show that the PRV levels have no confounding effects on the mRNA expression of the investigated genes. The results suggest that TTA induced cardiac growth, together with an elevated cardiac recruitment of immune cells, which might lead to increased robustness during HSMI infection.


PLOS ONE | 2017

Genome-wide analysis of Atlantic salmon (Salmo salar) mucin genes and their role as biomarkers

Lene Sveen; Fabian Grammes; Elisabeth Ytteborg; Harald Takle; Sven Martin Jørgensen

The aim of this study was to identify potential mucin genes in the Atlantic salmon genome and evaluate tissue-specific distribution and transcriptional regulation in response to aquaculture-relevant stress conditions in post-smolts. Seven secreted gel-forming mucin genes were identified based on several layers of evidence; annotation, transcription, phylogeny and domain structure. Two genes were annotated as muc2 and five genes as muc5. The muc2 genes were predominantly transcribed in the intestinal region while the different genes in the muc5 family were mainly transcribed in either skin, gill or pyloric caeca. In order to investigate transcriptional regulation of mucins during stress conditions, two controlled experiments were conducted. In the first experiment, handling stress induced mucin transcription in the gill, while transcription decreased in the skin and intestine. In the second experiment, long term intensive rearing conditions (fish biomass ~125 kg/m3) interrupted by additional confinement led to increased transcription of mucin genes in the skin at one, seven and fourteen days post-confinement.


BMC Genomics | 2012

Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L).

Fabian Grammes; Kjell-Arne Rørvik; Magny S. Thomassen; Rolf K. Berge; Harald Takle

BackgroundUnder-dimensioned hearts causing functional problems are associated with higher mortality rates in intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA) induces cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR) α and β in the Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic salmon.ResultsAtlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9 weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle.ConclusionsOur results indicate that TTA has profound effects on cardiac performance based on results from microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding Aquaculture situations.


BMC Immunology | 2011

Anti-inflammatory effects of tetradecylthioacetic acid (TTA) in macrophage-like cells from Atlantic salmon (Salmo salar L.)

Fabian Grammes; Harald Takle

BackgroundCommercial Atlantic salmon is fed diets with high fat levels to promote fast and cost-effective growth. To avoid negative impact of obesity, food additives that stimulate fat metabolism and immune function are of high interest. TTA, tetradecylthioacetic acid, is a synthetic fatty acid that stimulates mitochondrial β-oxidation most likely by activation of peroxysome proliferator-activated receptors (PPARs). PPARs are important transcription factors regulating multiple functions including fat metabolism and immune responses. Atlantic salmon experiments have shown that TTA supplemented diets significantly reduce mortality during natural outbreaks of viral diseases, suggesting a modulatory role of the immune system.ResultsTo gain new insights into TTA effects on the Atlantic salmon immune system, a factorial, high-throughput microarray experiment was conducted using a 44K oligo nucleotide salmon microarray SIQ2.0 and the Atlantic salmon macrophage-like cell line ASK. The experiment was used to determine the transcriptional effects of TTA, the effects of TTA in poly(I:C) elicited cells and the effects of pretreating the cells with TTA. The expression patterns revealed that a large proportion of genes regulated by TTA were related to lipid metabolism and increased mitochondrial β-oxidation. In addition we found that for a subset of genes TTA antagonized the transcriptional effects of poly(I:C). This, together with the results from qRT-PCR showing an increased transcription of anti-inflammatory IL10 by TTA, indicates anti-inflammatory effects.ConclusionsWe demonstrate that TTA has significant effects on macrophage-like salmon cells that are challenged by the artificial dsRNA poly(I:C). The immune stimulatory effect of TTA in macrophages involves increased lipid metabolism and suppressed inflammatory status. Thus, suggesting that TTA directs the macrophage-like cells towards alternative, anti-inflammatory, activation. This has positive implications for TTA as a feed additive.

Collaboration


Dive into the Fabian Grammes's collaboration.

Top Co-Authors

Avatar

Kjell-Arne Rørvik

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Margareth Øverland

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Sigbjørn Lien

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Simen Rød Sandve

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Ariadna Sitjà-Bobadilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gabriel F. Ballester-Lozano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jaume Pérez-Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josep A. Calduch-Giner

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dag Inge Våge

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jeevan Karloss Antony Samy

Norwegian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge