Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian Grein is active.

Publication


Featured researches published by Fabian Grein.


Frontiers in Microbiology | 2011

A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea

Inês Cardoso Ia Pereira; Ana Raquel Ramos; Fabian Grein; Marta C. Marques; Sofia M. da Silva; Sofia S. Venceslau

The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(P)H, β-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation.


Biochimica et Biophysica Acta | 2013

Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.

Fabian Grein; Ana Raquel Ramos; Sofia S. Venceslau; Inês Cardoso Ia Pereira

Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains

Anna Müller; Michaela Wenzel; Henrik Strahl; Fabian Grein; Terrens N. V. Saaki; Bastian Kohl; Tjalling Siersma; Julia E. Bandow; Hans-Georg Sahl; Tanja Schneider; Leendert W. Hamoen

Significance To date, simple membrane pore formation resulting in cytoplasmic leakage is the prevailing model for how membrane-active antibiotics kill bacteria and also is one of the main explanations for the activity of the membrane-binding antibiotic daptomycin. However, such models, typically derived from model membrane studies, often depict membranes as homogenous lipid bilayers. They do not take into account the complex architecture of biological membranes, with their many different membrane proteins, or the presence of microdomains with different fluidity properties. Here we report that daptomycin perturbs fluid microdomains in bacterial cell membranes, thereby interfering with membrane-bound cell wall and lipid synthesis processes. Our results add a different perspective as to how membrane-active antibiotics can kill bacteria. Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including (i) blockage of cell wall synthesis, (ii) membrane pore formation, and (iii) the generation of altered membrane curvature leading to aberrant recruitment of proteins. To determine which model is correct, we carried out a comprehensive mode-of-action study using the model organism Bacillus subtilis and different assays, including proteomics, ionomics, and fluorescence light microscopy. We found that daptomycin causes a gradual decrease in membrane potential but does not form discrete membrane pores. Although we found no evidence for altered membrane curvature, we confirmed that daptomycin inhibits cell wall synthesis. Interestingly, using different fluorescent lipid probes, we showed that binding of daptomycin led to a drastic rearrangement of fluid lipid domains, affecting overall membrane fluidity. Importantly, these changes resulted in the rapid detachment of the membrane-associated lipid II synthase MurG and the phospholipid synthase PlsX. Both proteins preferentially colocalize with fluid membrane microdomains. Delocalization of these proteins presumably is a key reason why daptomycin blocks cell wall synthesis. Finally, clustering of fluid lipids by daptomycin likely causes hydrophobic mismatches between fluid and more rigid membrane areas. This mismatch can facilitate proton leakage and may explain the gradual membrane depolarization observed with daptomycin. Targeting of fluid lipid domains has not been described before for antibiotics and adds another dimension to our understanding of membrane-active antibiotics.


Environmental Microbiology | 2012

Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome.

Kevin Denkmann; Fabian Grein; Renate Zigann; Anna Siemen; Johannes Bergmann; Sebastian van Helmont; Anne Nicolai; Inês A. C. Pereira; Christiane Dahl

In this work we identified the gene for the tetrathionate-forming thiosulfate dehydrogenase (TsdA) from the purple sulfur bacterium Allochromatium vinosum by sequence analysis and reverse genetics. The recombinant protein produced in Escherichia coli is a periplasmic, monomeric 25.8 kDa dihaem cytochrome c with an enzyme activity optimum at pH 4. UV-visible and electron paramagnetic resonance spectroscopy indicate methionine (strictly conserved M(222) or M(236)) and cysteine (C(123) ) as probable sixth distal axial ligands of the two haem irons in TsdA. These results place TsdA in the group of c-type cytochromes with an unusual axial histidine-cysteine coordination of the haem iron. These proteins appear to play a pivotal role in sulfur-based energy metabolism. Exchange of C(123) to glycine rendered thiosulfate dehydrogenase inactive, proving the importance of this residue for catalysis. TsdA homologues are present in α-, β-, δ-, γ- and ε-Proteobacteria. Three of these were produced in E. coli and exhibited the expected enzymatic activity. The widespread occurrence of tsdA agrees with reports of tetrathionate formation not only by specialized sulfur oxidizers but also by many chemoorganoheterotrophs that use thiosulfate as a supplemental but not as the sole energy source.


Journal of Bacteriology | 2010

Biochemical Characterization of Individual Components of the Allochromatium vinosum DsrMKJOP Transmembrane Complex Aids Understanding of Complex Function In Vivo

Fabian Grein; Inês A. C. Pereira; Christiane Dahl

The DsrMKJOP transmembrane complex has a most important function in dissimilatory sulfur metabolism and consists of cytoplasmic, periplasmic, and membrane integral proteins carrying FeS centers and b- and c-type cytochromes as cofactors. In this study, the complex was isolated from the purple sulfur bacterium Allochromatium vinosum and individual components were characterized as recombinant proteins. The two integral membrane proteins DsrM and DsrP were successfully produced in Escherichia coli C43(DE3) and C41(DE3), respectively. DsrM was identified as a diheme cytochrome b, and the two hemes were found to be in low-spin state. Their midpoint redox potentials were determined to be +60 and +110 mV. Although no hemes were predicted for DsrP, it was also clearly identified as a b-type cytochrome. To the best of our knowledge, this is the first time that heme binding has been experimentally proven for a member of the NrfD protein family. Both cytochromes were partly reduced after addition of a menaquinol analogue, suggesting interaction with quinones in vivo. DsrO and DsrK were both experimentally proven to be FeS-containing proteins. In addition, DsrK was shown to be membrane associated, and we propose a monotopic membrane anchoring for this protein. Coelution assays provide support for the proposed interaction of DsrK with the soluble cytoplasmic protein DsrC, which might be its substrate. A model for the function of DsrMKJOP in the purple sulfur bacterium A. vinosum is presented.


Environmental Microbiology | 2015

The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

Ana Raquel Ramos; Fabian Grein; Gonçalo P Gp Oliveira; Sofia S. Venceslau; Kimberly L. Keller; Judy D. Wall; Inês Cardoso Ia Pereira

Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production.


Biochemistry | 2010

DsrJ, an Essential Part of the DsrMKJOP Transmembrane Complex in the Purple Sulfur Bacterium Allochromatium vinosum, Is an Unusual Triheme Cytochrome c

Fabian Grein; Sofia S. Venceslau; Lilian Schneider; Peter Hildebrandt; Smilja Todorovic; Inês A. C. Pereira; Christiane Dahl

The DsrMKJOP transmembrane complex has a most important function in dissimilatory sulfur metabolism, not only in many sulfur-oxidizing organisms but also in sulfate-reducing prokaryotes. Here, we focused on an individual component of this complex, the triheme cytochrome c DsrJ from the purple sulfur bacterium Allochromatium vinosum. In A. vinosum, the signal peptide of DsrJ is not cleaved off but serves as a membrane anchor. Sequence analysis suggested the presence of three heme c species with bis-His, His/Met, and possibly a very unusual His/Cys ligation. A. vinosum DsrJ produced as a recombinant protein in Escherichia coli indeed contained three hemes, and electron paramagnetic resonance (EPR) spectroscopy provided evidence of possible, but only partial, His/Cys heme ligation in one of the hemes. This heme shows heterogeneous coordination, with Met being another candidate ligand. Cysteine 46 was replaced with serine using site-directed mutagenesis, with the mutant protein showing a small decrease in the magnitude of the EPR signal attributed to His/Cys coordination, but identical UV-vis and RR spectra. The redox potentials of the hemes in the wild-type protein were determined to be -20, -200, and -220 mV and were found to be virtually identical in the mutant protein. However, in vivo the same ligand exchange led to a dramatically altered phenotype, highlighting the importance of Cys46. Our results suggest that Cys46 may be involved in catalytic sulfur chemistry rather than electron transfer. Additional in vivo experiments showed that DsrJ can be functionally replaced in A. vinosum by the homologous protein from the sulfate reducer Desulfovibrio vulgaris.


Antimicrobial Agents and Chemotherapy | 2015

Structural Variations of the Cell Wall Precursor Lipid II and Their Influence on Binding and Activity of the Lipoglycopeptide Antibiotic Oritavancin

Daniela Münch; Ina Engels; Anna Müller; Katrin Reder-Christ; Hildegard Falkenstein-Paul; Gabriele Bierbaum; Fabian Grein; Gerd Bendas; Hans-Georg Sahl; Tanja Schneider

ABSTRACT Oritavancin is a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin with activity against Gram-positive pathogens, including vancomycin-resistant staphylococci and enterococci. Compared to vancomycin, oritavancin is characterized by the presence of two additional residues, a hydrophobic 4′-chlorobiphenyl methyl moiety and a 4-epi-vancosamine substituent, which is also present in chloroeremomycin. Here, we show that oritavancin and its des-N-methylleucyl variant (des-oritavancin) effectively inhibit lipid I- and lipid II-consuming peptidoglycan biosynthesis reactions in vitro. In contrast to that for vancomycin, the binding affinity of oritavancin to the cell wall precursor lipid II appears to involve, in addition to the d-Ala-d-Ala terminus, other species-specific binding sites of the lipid II molecule, i.e., the crossbridge and d-isoglutamine in position 2 of the lipid II stem peptide, both characteristic for a number of Gram-positive pathogens, including staphylococci and enterococci. Using purified lipid II and modified lipid II variants, we studied the impact of these modifications on the binding of oritavancin and compared it to those of vancomycin, chloroeremomycin, and des-oritavancin. Analysis of the binding parameters revealed that additional intramolecular interactions of oritavancin with the peptidoglycan precursor appear to compensate for the loss of a crucial hydrogen bond in vancomycin-resistant strains, resulting in enhanced binding affinity. Augmenting previous findings, we show that amidation of the lipid II stem peptide predominantly accounts for the increased binding of oritavancin to the modified intermediates ending in d-Ala-d-Lac. Corroborating our conclusions, we further provide biochemical evidence for the phenomenon of the antagonistic effects of mecA and vanA resistance determinants in Staphylococcus aureus, thus partially explaining the low frequency of methicillin-resistant S. aureus (MRSA) acquiring high-level vancomycin resistance.


International Journal of Medical Microbiology | 2017

The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus.

Patrick Hardt; Ina Engels; Marvin Rausch; Mike Gajdiss; Hannah Ulm; Peter Sass; Knut Ohlsen; Hans-Georg Sahl; Gabriele Bierbaum; Tanja Schneider; Fabian Grein

The assembly of the bacterial cell wall requires synchronization of a multitude of biosynthetic machineries and regulatory networks. The eukaryotic-like serine/threonine kinase PknB has been implicated in coordinating cross-wall formation, autolysis and cell division in Staphylococcus aureus. However, the signal molecule sensed by this kinase remained elusive so far. Here, we provide compelling biochemical evidence that PknB interacts with the ultimate cell wall precursor lipid II, triggering kinase activity. Moreover, we observed crosstalk of PknB with the two component system WalKR and identified the early cell division protein FtsZ as another PknB phosphorylation substrate in S. aureus. In agreement with the implied role in regulation of cell envelope metabolism, we found PknB to preferentially localize to the septum of S. aureus and the PASTA domains to be crucial for recruitment to this site. The data provide a model for the contribution of PknB to control cell wall metabolism and cell division.


Biophysical Journal | 2015

The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.

Katharina Scherer; Jan-Hendrik Spille; Hans-Georg Sahl; Fabian Grein; Ulrich Kubitscheck

The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane.

Collaboration


Dive into the Fabian Grein's collaboration.

Top Co-Authors

Avatar

Sofia S. Venceslau

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Inês A. C. Pereira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Raquel Ramos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Inês Cardoso Ia Pereira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge