Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian Grusdt is active.

Publication


Featured researches published by Fabian Grusdt.


Nature | 2017

A cold-atom Fermi–Hubbard antiferromagnet

Anton Mazurenko; Christie S. Chiu; Geoffrey Ji; Maxwell Parsons; Márton Kanász-Nagy; R. Schmidt; Fabian Grusdt; Eugene Demler; Daniel Greif; Markus Greiner

Exotic phenomena in systems with strongly correlated electrons emerge from the interplay between spin and motional degrees of freedom. For example, doping an antiferromagnet is expected to give rise to pseudogap states and high-temperature superconductors. Quantum simulation using ultracold fermions in optical lattices could help to answer open questions about the doped Hubbard Hamiltonian, and has recently been advanced by quantum gas microscopy. Here we report the realization of an antiferromagnet in a repulsively interacting Fermi gas on a two-dimensional square lattice of about 80 sites at a temperature of 0.25 times the tunnelling energy. The antiferromagnetic long-range order manifests through the divergence of the correlation length, which reaches the size of the system, the development of a peak in the spin structure factor and a staggered magnetization that is close to the ground-state value. We hole-dope the system away from half-filling, towards a regime in which complex many-body states are expected, and find that strong magnetic correlations persist at the antiferromagnetic ordering vector up to dopings of about 15 per cent. In this regime, numerical simulations are challenging and so experiments provide a valuable benchmark. Our results demonstrate that microscopy of cold atoms in optical lattices can help us to understand the low-temperature Fermi–Hubbard model.Many exotic phenomena in strongly correlated electron systems emerge from the interplay between spin and motional degrees of freedom [1, 2]. For example, doping an antiferromagnet gives rise to interesting phases including pseudogap states and high-temperature superconductors [3]. A promising route towards achieving a complete understanding of these materials begins with analytic and computational analysis of simplified models. Quantum simulation has recently emerged as a complementary approach towards understanding these models [4–8]. Ultracold fermions in optical lattices offer the potential to answer open questions on the lowtemperature regime of the doped Hubbard model [9–11], which is thought to capture essential aspects of the cuprate superconductor phase diagram but is numerically intractable in that parameter regime. Already, Mott-insulating phases and short-range antiferromagnetic correlations have been observed, but temperatures were too high to create an antiferromagnet [12–15]. A new perspective is afforded by quantum gas microscopy [16–28], which allows readout of magnetic correlations at the site-resolved level [25–28]. Here we report the realization of an antiferromagnet in a repulsively interacting Fermi gas on a 2D square lattice of approximately 80 sites. Using site-resolved imaging, we detect (finite-size) antiferromagnetic long-range order (LRO) through the development of a peak in the spin structure factor and the divergence of the correlation length that reaches the size of the system. At our lowest temperature of T/t = 0.25(2) we find strong order across the entire sample, where the staggered magnetization approaches the ground-state value. Our experimental platform enables doping away from half filling, where pseudogap states and stripe ordering are expected, but theoretical methods become numerically intractable. In this regime we find that the antiferromagnetic LRO persists to hole dopings of about 15%, providing a guideline for computational methods. Our results demonstrate that quantum gas microscopy of ultracold fermions in optical lattices can now address open questions on the low-temperature Hubbard model. The Hubbard Hamiltonian is a fundamental model for spinful lattice electrons describing a competition between kinetic energy t and interaction energy U [29]. In the limiting case of half-filling (average one particle per site) and dominant interactions (U/t 1) the Hubbard model maps to the Heisenberg model [1]. There, the exchange energy J = 4t/U can give rise to antiferromagnetically ordered states at low temperatures [30]. This order persists for all finite U/t, where charge fluctuations reduce the ordering strength [31]. Away from half-filling, the coupling between motional and spin degrees of freedom is expected to give rise to a rich many-body phase diagram (see Fig. 1a), which is challenging to understand theoretically due to the fermion sign problem [32]. Even so, in the thermodynamic limit commensurate long-range order (LRO) has been conjectured to transition to incommensurate LRO infinitesimally far from half-filling, whereas for finite-size systems commensurate order is expected to extend to non-zero doping [31, 33]. The strength of global antiferromagnetic order in spin systems on bipartite lattices is quantified by the staggered magnetization m = |m|. The component along the z spin direction is


Nature | 2017

Microscopy of the interacting Harper–Hofstadter model in the two-body limit

M. Eric Tai; Alexander Lukin; Matthew Rispoli; Robert Schittko; Tim Menke; Dan Borgnia; Philipp Preiss; Fabian Grusdt; Adam Kaufman; Markus Greiner

The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement. Although these phases were discovered in a solid-state setting, recent innovations in systems of ultracold neutral atoms—uncharged atoms that do not naturally experience a Lorentz force—allow the synthesis of artificial magnetic, or gauge, fields. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper–Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.


Physical Review Letters | 2013

Topological edge States in the one-dimensional superlattice Bose-Hubbard model.

Fabian Grusdt; Michael Höning; Michael Fleischhauer

We analyze interacting ultracold bosonic atoms in a one-dimensional superlattice potential with alternating tunneling rates t1 and t2 and inversion symmetry, which is the bosonic analogue of the Su-Schrieffer-Heeger model. A Z2 topological order parameter is introduced which is quantized for the Mott insulating (MI) phases. Depending on the ratio t1/t2 the n=1/2 MI phase is topologically nontrivial, which results in many-body edge states at open boundaries. In contrast to the Su-Schrieffer-Heeger model the bosonic counterpart lacks chiral symmetry and the edge states are no longer midgap. This leads to a generalization of the bulk-edge correspondence, which we discuss in detail. The edge states can be observed in cold atom experiments by creating a step in the effective confining potential, e.g., by a second heavy atom species, which leads to an interface between two MI regions with filling n=1 and n=1/2. The shape and energy of the edge states as well as the conditions for their occupation are determined analytically in the strong coupling limit and in general by density-matrix renormalization group simulations.


Science | 2016

Bloch state tomography using Wilson lines

Tracy Li; Lucia Duca; Martin Reitter; Fabian Grusdt; Eugene Demler; Manuel Endres; Monika Schleier-Smith; Immanuel Bloch; Ulrich Schneider

Cold atoms do geometry Electrons in solids populate energy bands, which can be simulated in cold atom systems using optical lattices. The geometry of the corresponding wave functions determines the topological properties of the system, but getting a direct look is tricky. Fläschner et al. and Li et al. measured the detailed structure of the band wave functions in hexagonal optical lattices, one resembling a boron-nitride and the other a graphene lattice. These techniques will make it possible to explore more complex situations that include the effects of interactions. Science, this issue pp. 1091 and 1094 Transport of a Bose-Einstein condensate in a hexagonal optical lattice reveals the geometry of band wave functions. Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single- and multiband Chern and Z2 numbers.


Physical Review A | 2014

Radio-frequency spectroscopy of polarons in ultracold Bose gases

Aditya Shashi; Fabian Grusdt; Dmitry A. Abanin; Eugene Demler

Recent experimental advances enabled the realization of mobile impurities immersed in a Bose-Einstein condensate (BEC) of ultracold atoms. Here we consider impurities with two or more internal hyperfine states, and study their radio-frequency (RF) absorption spectra, which correspond to transitions between two different hyperfine states. We calculate RF spectra for the case when one of the hyperfine states involved interacts with the BEC, while the other state is non-interacting, by performing a non-perturbative resummation of the probabilities of exciting different numbers of phonon modes. In the presence of interactions the impurity gets dressed by Bogoliubov excitations of the BEC, and forms a polaron. The RF signal contains a delta-function peak centered at the energy of the polaron measured relative to the bare impurity transition frequency with a weight equal to the amount of bare impurity character in the polaron state. The RF spectrum also has a broad incoherent part arising from the background excitations of the BEC, with a characteristic power-law tail that appears as a consequence of the universal physics of contact interactions. We discuss both the direct RF measurement, in which the impurity is initially in an interacting state, and the inverse RF measurement, in which the impurity is initially in a non-interacting state. In the latter case, in order to calculate the RF spectrum, we solve the problem of polaron formation: a mobile impurity dynamically gets dressed by Bogoliubov phonons. Our solution based on a time-dependent variational ansatz of coherent states of Bogoliubov phonons, becomes exact when the impurity is localized. Moreover we show that such an ansatz compares well with a semiclassical estimate of the propagation amplitude of a mobile impurity in the BEC. Our technique can be extended to cases when both initial and final impurity states interact with the BEC.


Science | 2017

Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

Timon A. Hilker; Guillaume Salomon; Fabian Grusdt; Ahmed Omran; Martin Boll; Eugene Demler; Immanuel Bloch; Christian Gross

Spin-charge separation in atomic chains Strongly interacting electrons lined up along a string can experience the so-called spin-charge separation, where the electrons “split” into effective carriers of spin and charge, which then move independently. This phenomenon has been observed, somewhat indirectly, in solids. Hilker et al. show spin-charge separation in a direct way by using a one-dimensional (1D) array of cold atoms, playing the role of electrons, whose degrees of freedom of spin and charge can be monitored using a fermionic quantum gas microscope. Empty sites in the 1D lattice moved freely without disturbing the underlying antiferromagnetic order. Science, this issue p. 484 A fermionic quantum gas microscope is used to track spin-charge separation in chains of 6Li atoms. Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.


Scientific Reports | 2015

Renormalization group approach to the Fröhlich polaron model: application to impurity-BEC problem

Fabian Grusdt; Yulia E. Shchadilova; A. N. Rubtsov; Eugene Demler

When a mobile impurity interacts with a many-body system, such as a phonon bath, a polaron is formed. Despite the importance of the polaron problem for a wide range of physical systems, a unified theoretical description valid for arbitrary coupling strengths is still lacking. Here we develop a renormalization group approach for analyzing a paradigmatic model of polarons, the so-called Fröhlich model, and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement with recent diagrammatic Monte Carlo calculations for a wide range of interaction strengths. They are found to be logarithmically divergent with the ultra-violet cut-off, but physically meaningful regularized polaron energies are also presented. Moreover, we calculate the effective mass of polarons and find a smooth crossover from weak to strong coupling regimes. Possible experimental tests of our results in current experiments with ultra cold atoms are discussed.


Physical Review Letters | 2016

Quantum Dynamics of Ultracold Bose Polarons

Yulia E. Shchadilova; Richard Schmidt; Fabian Grusdt; Eugene Demler

We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T-matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.


New Journal of Physics | 2017

Bose polarons in ultracold atoms in one dimension: beyond the Fröhlich paradigm

Fabian Grusdt; Gregory E. Astrakharchik; Eugene Demler

Mobile impurity atoms immersed in Bose–Einstein condensates provide a new platform for exploring Bose polarons. Recent experimental advances in the field of ultracold atoms make it possible to realize such systems with highly tunable microscopic parameters and to explore equilibrium and dynamical properties of polarons using a rich toolbox of atomic physics. In this paper we present a detailed theoretical analysis of Bose polarons in one-dimensional systems of ultracold atoms. By combining a non-perturbative renormalization group approach with numerically exact diffusion Monte Carlo calculations we obtain not only detailed numerical results over a broad range of parameters but also qualitative understanding of different regimes of the system. We find that an accurate description of Bose polarons requires the inclusion of two-phonon scattering terms which go beyond the commonly used Frohlich model. Furthermore we show that when the Bose gas is in the strongly interacting regime, one needs to include interactions between the phonon modes. We use several theoretical approaches to calculate the polaron energy and its effective mass. The former can be measured using radio-frequency spectroscopy and the latter can be studied experimentally using impurity oscillations in a harmonic trapping potential. We compare our theoretical results for the effective mass to the experiments by Catani et al (2012 Phys. Rev. A 85 023623). In the weak-to-intermediate coupling regimes we obtain excellent quantitative agreement between theory and experiment, without any free fitting parameter. We supplement our analysis by full dynamical simulations of polaron oscillations in a shallow trapping potential. We also use our renormalization group approach to analyze the full phase diagram and identify regions that support repulsive and attractive polarons, as well as multi-particle bound states.


Physical Review A | 2014

Measuring Z 2 topological invariants in optical lattices using interferometry

Fabian Grusdt; Dmitry A. Abanin; Eugene Demler

We propose an interferometric method to measure Z2 topological invariants of time-reversal invariant topological insulators realized with optical lattices in two and three dimensions. We suggest two schemes which both rely on a combination of Bloch oscillations with Ramsey interferometry and can be implemented using standard tools of atomic physics. In contrast to topological Zak phase and Chern number, defined for individual 1D and 2D Bloch bands, the formulation of the Z2 invariant involves at least two Bloch bands related by time- reversal symmetry which one has keep track of in measurements. In one of our schemes this can be achieved by the measurement of Wilson loops, which are non-Abelian generalizations of Zak phases. The winding of their eigenvalues is related to the Z2 invariant. We thereby demonstrate that Wilson loops are not just theoretical concepts but can be measured experimentally. For the second scheme we introduce a generalization of time-reversal polarization which is continuous throughout the Brillouin zone. We show that its winding over half the Brillouin zone yields the Z2 invariant. To measure this winding, our protocol only requires Bloch oscillations within a single band, supplemented by coherent transitions to a second band which can be realized by lattice-shaking.

Collaboration


Dive into the Fabian Grusdt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Fleischhauer

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry A. Abanin

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge