Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian Heinemann is active.

Publication


Featured researches published by Fabian Heinemann.


eLife | 2013

Myosin motors fragment and compact membrane-bound actin filaments

Sven K. Vogel; Zdenek Petrasek; Fabian Heinemann; Petra Schwille

Cell cortex remodeling during cell division is a result of myofilament-driven contractility of the cortical membrane-bound actin meshwork. Little is known about the interaction between individual myofilaments and membrane-bound actin filaments. Here we reconstituted a minimal actin cortex to directly visualize the action of individual myofilaments on membrane-bound actin filaments using TIRF microscopy. We show that synthetic myofilaments fragment and compact membrane-bound actin while processively moving along actin filaments. We propose a mechanism by which tension builds up between the ends of myofilaments, resulting in compressive stress exerted to single actin filaments, causing their buckling and breakage. Modeling of this mechanism revealed that sufficient force (∼20 pN) can be generated by single myofilaments to buckle and break actin filaments. This mechanism of filament fragmentation and compaction may contribute to actin turnover and cortex reorganization during cytokinesis. DOI: http://dx.doi.org/10.7554/eLife.00116.001


Biophysical Journal | 2013

Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex

Fabian Heinemann; Sven K. Vogel; Petra Schwille

Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner.


Biophysical Chemistry | 2011

Gastropod nacre: structure, properties and growth--biological, chemical and physical basics.

Fabian Heinemann; Malte Launspach; Katharina Gries; Monika Fritz

The biogenic polymer/mineral composite nacre is a non-brittle biological ceramic, which self-organizes in aqueous environment and under ambient conditions. It is therefore an important model for new sustainable materials. Its highly controlled structural organization of mineral and organic components at all scales down to the nano- and molecular scales is guided by organic molecules. These molecules then get incorporated into the material to be responsible for properties like fracture mechanics, beauty and corrosion resistance. We report here on structure, properties and growth of columnar (gastropod) nacre with emphasis on the genus Haliotis in contrast to sheet nacre of many bivalves.


Biophysical Journal | 2011

Keratocyte Lamellipodial Protrusion Is Characterized by a Concave Force-Velocity Relation

Fabian Heinemann; Holger Doschke; Manfred Radmacher

We report on the characterization of actin driven lamellipodial protrusion forces and velocities in keratocytes. A vertically mounted glass fiber acted as a flexible barrier positioned in front of migrating keratocytes with parallel phase contrast microscopy. A laser beam was coupled into the fiber and allowed detecting the position of the fiber by a segmented photodiode. Calibration of the fiber was carried out with the thermal oscillation method. Deflection and force signals were measured during lamellipodial protrusion. Velocity was constant during initial contact whereas loading force increased until finally the cell was stalled at higher forces. Stall forces were on the order of 2.9 ± 0.6 nN, which corresponds to a stall pressure of 2.7 ± 1.6 nN/μm(2). Assuming a density of actin filaments of 240 filaments per μm, we can estimate a stall force per actin filament of 1.7 ± 0.8 pN. To check for adaption of the cell against an external force, we let the cell push toward the glass fiber several times. On the timescale of the experiment (∼1 min), however, the cell did not adapt to previous loading events.


Nucleus | 2011

Amphibian oocyte nuclei expressing lamin A with the progeria mutation E145K exhibit an increased elastic modulus.

Anna Kaufmann; Fabian Heinemann; Manfred Radmacher; Reimer Stick

Mutations in the human lamin A gene (LMNA) cause a wide range of diseases (laminopathies). Among these is the Hutchinson-Gilford progeria syndrome (HGPS), a rare premature aging disease. Most HGPS patients carry a silent point mutation, which activates a cryptic splice site resulting in the expression of a permanently isoprenylated and truncated lamin AΔ50/progerin. Another type of mutant lamin A namely, E145K-lamin A, also causes HGPS. E145K-lamin A induces profound changes in the nuclear architecture of patient cells as well as after expression in cultured cells. The E145K mutation is located in the α-helical central domain of lamin A, which is involved in lamin filament assembly. In vitro analyses of purified E145K-lamin A have revealed severe assembly defects into higher order lamin structures, which indicates an abnormal lateral association of protofilaments. To analyze how the altered assembly observed in vitro might influence the mechanics of a nuclear lamina formed by E145K-lamin A, mutant and wild type lamin A were ectopically expressed in amphibian oocytes. Both types form a lamina consisting of multi-layered sheets of filaments at the inner side of the nuclear envelope. The mechanical properties of isolated nuclei were measured by atomic force microscopy (AFM). From the resulting force curves, the stiffness of the lamina was estimated. The thickness of the resulting lamin A layer was then measured by TEM. The two parameters allowed us to estimate the elastic modulus (Youngs modulus) of the lamina. Lamin A sheets made from E145K filaments have a higher Youngs modulus compared to wild type filaments, i.e. the E145K-lamin A sheets are more rigid than wild type laminae of comparable thickness.


Cytoskeleton | 2013

The design of MACs (minimal actin cortices)

Sven K. Vogel; Fabian Heinemann; Grzegorz Chwastek; Petra Schwille

The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin‐myosin‐membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom‐up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin‐myosin‐membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes.


Acta Biomaterialia | 2014

Mapping nanomechanical properties of freshly grown, native, interlamellar organic sheets on flat pearl nacre.

Malte Launspach; Katharina I. Gries; Fabian Heinemann; Anja Hübner; Monika Fritz; Manfred Radmacher

We imaged surfaces of freshly grown flat pearl nacre (Haliotis tuberculata) in different stages of growth in seawater using an atomic force microscope (AFM). Characteristic mineral phases of nacre, such as aragonitic stacks of coins, as well as the associated organic sheets, could be detected. Apart from imaging, the acquisition of force volumes on freshly grown organic surface areas on flat pearl nacre was conducted with the AFM. The evaluation of the force volumes with the Hertz-Sneddon model resulted in Youngs moduli in the MPa range. The presented values are considerably smaller than values previously determined from macroscopic tensile tests. This might reflect the anisotropy of the organic nacre layers.


Biochimica et Biophysica Acta | 2015

Introducing a fluorescence-based standard to quantify protein partitioning into membranes

Franziska A. Thomas; Ilaria Visco; Zdenek Petrasek; Fabian Heinemann; Petra Schwille

The affinity of peripheral membrane proteins for a lipid bilayer can be described using the partition coefficient (KP). Although several methods to determine KP are known, all possess limitations. To address some of these issues, we developed both: a versatile method based on single molecule detection and fluorescence imaging for determining KP, and a simple measurement standard employing hexahistidine-tagged enhanced green fluorescent protein (eGFP-His6) and free standing membranes of giant unilamellar vesicles (GUVs) functionalized with NTA(Ni) lipids as binding sites. To ensure intrinsic control, our method features two measurement modes. In the single molecule mode, fluorescence correlation spectroscopy (FCS) is applied to quantify free and membrane associated protein concentrations at equilibrium and calculate KP. In the imaging mode, confocal fluorescence images of GUVs are recorded and analyzed with semi-automated software to extract protein mean concentrations used to derive KP. Both modes were compared by determining the affinity of our standard, resulting in equivalent KP values. As observed in other systems, eGFP-His6 affinity for membranes containing increasing amounts of NTA(Ni) lipids rises in a stronger-than-linear fashion. We compared our dual approach with a FCS-based assay that uses large unilamellar vesicles (LUVs), which however fails to capture the stronger-than-linear trend for our NTA(Ni)-His6 standard. Hence, we determined the KP of the MARCKS effector domain with our FCS approach on GUVs, whose results are consistent with previously published data using LUVs. We finally provide a practical manual on how to measure KP and understand it in terms of molecules per lipid surface.


Drug Discovery Today | 2016

Reflection of successful anticancer drug development processes in the literature

Fabian Heinemann; Torsten Huber; Christian Meisel; Markus Bundschus; Ulf Leser

The development of cancer drugs is time-consuming and expensive. In particular, failures in late-stage clinical trials are a major cost driver for pharmaceutical companies. This puts a high demand on methods that provide insights into the success chances of new potential medicines. In this study, we systematically analyze publication patterns emerging along the drug discovery process of targeted cancer therapies, starting from basic research to drug approval - or failure. We find clear differences in the patterns of approved drugs compared with those that failed in Phase II/III. Feeding these features into a machine learning classifier allows us to predict the approval or failure of a targeted cancer drug significantly better than educated guessing. We believe that these findings could lead to novel measures for supporting decision making in drug development.


Data in Brief | 2015

Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes

Franziska A. Thomas; Ilaria Visco; Zdeněk Petrášek; Fabian Heinemann; Petra Schwille

Recently, a new and versatile assay to determine the partitioning coefficient KP as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, “Introducing a fluorescence-based standard to quantify protein partitioning into membranes” [1]. Here, the well-characterized binding of hexahistidine-tag (His6) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient D of His6-tagged enhanced green fluorescent protein (eGFP-His6) and the fluorescent lipid analog ATTO‐647N‐DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants Kd of the NTA(Ni)/eGFP-His6 system are reported. Further, a conversion between Kd and KP is provided.

Collaboration


Dive into the Fabian Heinemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge