Fabian Holzmeier
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabian Holzmeier.
Chemistry: A European Journal | 2014
Fabian Holzmeier; Melanie Lang; Patrick Hemberger; Andras Bodi; Marius Schäfer; Rian D. Dewhurst; Holger Braunschweig; Ingo Fischer
The photoionization and dissociative photoionization of 1,4-di-tert-butyl-1,4-azaborinine by means of synchrotron radiation and threshold photoelectron photoion coincidence spectroscopy is reported. The ionization energy of the compound was determined to be 7.89 eV. Several low-lying electronically excited states in the cation were identified. The various pathways for dissociative photoionization were modeled by statistical theory, and appearance energies AE0K were obtained. The loss of isobutene in a retro-hydroboration reaction is the dominant pathway, which proceeds with a reverse barrier. Pyrolysis of the parent compound in a chemical reactor leads to the generation of several yet unobserved boron compounds. The ionization energies of the C4 H6 BN isomers 1,2- and 1,4-dihydro-1,4-azaborinine and the C3 H6 BN isomer 1,2-dihydro-1,3-azaborole were determined from threshold photoelectron spectra.
Journal of Physical Chemistry A | 2015
Melanie Lang; Fabian Holzmeier; Patrick Hemberger; Ingo Fischer
Threshold photoelectron spectra of combustion relevant C4H5 isomers, 2-butyn-1-yl and 1-butyn-3-yl, and C4H7 isomers, 1-methylallyl and 2-methylallyl, have been recorded using vacuum ultraviolet synchrotron radiation. Adiabatic ionization energies (IEad) have been determined by assigning spectroscopic transitions in mass-selected threshold photoelectron spectra aided by Franck-Condon simulations. The following values were obtained: (7.97 ± 0.02) eV (1-butyn-3-yl), (7.94 ± 0.02) eV (2-butyn-1-yl), (7.48 ± 0.01) eV (1-E-methylallyl), (7.59 ± 0.01) eV (1-Z-methylallyl), and (7.88 ± 0.01) eV (2-methylallyl). Good agreement with CBS-QB3 calculations and simulations could be achieved.
Journal of Chemical Physics | 2013
Fabian Holzmeier; Melanie Lang; Kilian Hader; Patrick Hemberger; Ingo Fischer
In this paper, we reinvestigate the photoionization of nitrogen containing reactive intermediates of the composition H2CN and H2CNH, molecules of importance in astrochemistry and biofuel combustion. In particular, H2CN is also of considerable interest to theory, because of its complicated potential energy surface. The species were generated by flash pyrolysis, ionized with vacuum ultraviolet synchrotron radiation, and studied by mass-selected threshold photoelectron (TPE) spectroscopy. In the mass-selected TPE-spectrum of m/z = 28, contributions of all four isomers of H2CN were identified. The excitation energy to the triplet cation of the methylene amidogen radical H2CN was determined to be 12.32 eV. Considerable activity in the C-N mode of the cation is visible. Furthermore, we derived values for excitation into the triplet cations of 11.72 eV for cis-HCNH, 12.65 eV for trans-HCNH, and 11.21 eV for H2NC. The latter values are probably accurate to within one vibrational quantum. The spectrum features an additional peak at 10.43 eV that corresponds to excitation into the C(2v)-symmetric H2CN(+). As this structure constitutes a saddle point, the peak is assigned to an activated complex on the singlet potential energy surface of the cation, corresponding to a hydrogen atom migration. For methanimine, H2CNH, the adiabatic ionization energy IE(ad) was determined to be 9.99 eV and the vibrational structure of the spectrum was analyzed in detail. The uncertainty of earlier values that simply assigned the signal onset to the IE(ad) is thus considerably reduced. The spectrum is dominated by the H-N-C bending mode ν1(+) and the rocking mode ν3(+). All experimental data were supported by calculations and Franck-Condon simulations.
Journal of Physical Chemistry A | 2013
Melanie Lang; Fabian Holzmeier; Ingo Fischer; Patrick Hemberger
Two π-conjugated radicals, fluorenyl (C13H9) and benzhydryl (C13H11), as well as the carbene diphenylmethylene (C13H10) were studied by imaging photoelectron-photoion coincidence spectroscopy using VUV synchrotron radiation. The reactive intermediates were generated by flash pyrolysis from 9-bromofluorene and α-aminodiphenylmethane (adpm), respectively. Adiabatic ionization energies (IEad) for all three species were extracted. Values of 7.01 ± 0.02 eV for fluorenyl and 6.7 ± 0.1 eV for benzhydryl are reported. For the triplet diphenylmethylene, an IEad of 6.8 ± 0.1 eV is found. The dissociative photoionization of 9-bromofluorene, the precursor for fluorenyl, was also studied and modeled with an SSACM approach, yielding an appearance energy AE0K(C13H9(+)/C13H9Br) of 9.4 eV. All experimental values are in very good agreement with computations. For fluorenyl, the IEad agrees well with earlier values, while for the benzhydryl radical, we report a value that is more than 0.6 eV lower than the one previously reported. The geometry change upon ionization is small for all three species. Although individual vibrational bands cannot be resolved, some vibrational transitions in the threshold photoelectron spectrum of fluorenyl are tentatively assigned based on a Franck-Condon simulation. In addition, the dimerization products of fluorenyl and the benzhydryl radical were detected. Ionization energies of (7.69 ± 0.04) and (8.11 ± 0.04) eV were determined for C26H18 and C26H22, respectively. On the basis of the ionization energies, we identified both molecules to be the direct dimerization products, formed in the pyrolysis without further rearrangement. Both dimers might be expected to play a role in soot formation because the radical monomers do appear in flames.
ChemPhysChem | 2014
Fabian Holzmeier; Melanie Lang; Patrick Hemberger; Ingo Fischer
The ionization of two resonantly stabilized radicals, namely 1-phenylpropargyl (1PPR) and 3-phenylpropargyl (3PPR) are reinvestigated applying vacuum ultraviolet synchrotron radiation and threshold photoelectron spectroscopy. Ionization energies of 7.24±0.02 and 7.25±0.01 eV are obtained for 1 and 3PPR respectively, which compare well with ab initio calculations. The quality of the spectra are significantly improved mostly due to the application of a new high-photon-flux grating available at the VUV-beamline of Swiss Light Source. Resolved vibrational features are assigned according to a Franck-Condon approach.
Journal of Chemical Physics | 2015
Fabian Holzmeier; Melanie Lang; Ingo Fischer; Xiaofeng Tang; Barbara Cunha de Miranda; Claire Romanzin; Christian Alcaraz; Patrick Hemberger
The threshold photoelectron spectra (TPES) of two unstable nitrogen-containing species, HNCO and NCO, were recorded utilizing vacuum ultraviolet synchrotron radiation. Both are intermediates in combustion processes and play a role in the removal of nitrogen oxides from exhaust gases. The rovibronic structure of the first band in the TPES of HNCO(+) was analyzed within the framework of an orbital ionization model, and the resolved structure of the origin band was assigned to ΔK subbands. An ionization energy of 11.602 ± 0.005 eV was determined and the vibrational structure of the cationic ground state was analyzed by a Franck-Condon fit. Low lying electronically excited states of HNCO(+) were also observed. In a second series of experiments, the NCO radical was generated by flash pyrolysis from chlorine isocyanate. The ionization energy to the X(+) (3)Σ(-) ground state was determined to be 11.76 ± 0.02 eV, while for the a(+) (1)Δ state, a value of 12.93 ± 0.02 eV was obtained. Vibrational structure was observed for both states, and bands were assigned by Franck-Condon simulations.
Journal of Physical Chemistry A | 2014
Melanie Lang; Fabian Holzmeier; Ingo Fischer; Patrick Hemberger
Derivatives of meldrums acid are known precursors for a number of reactive intermediates. Therefore, we investigate diazomeldrums acid (DMA) and its pyrolysis products by photoionization using vacuum ultraviolet (VUV) synchrotron radiation. The threshold photoelectron spectrum of DMA yields an ionization energy (IE) of 9.68 eV. Several channels for dissociative photoionization are observed. The first one is associated with loss of CH3, leading to a daughter ion with m/z = 155. Its appearance energy AE0K was determined to be 10.65 eV by fitting the experimental data using statistical theory. A second parallel channel leads to m/z = 69, corresponding to N2CHCO, with an AE0K of 10.72 eV. Several other channels open up at higher energy, among them the formation of acetone cation, a channel expected to be the result of a Wolff-rearrangement (WR) in the cation. When diazomeldrums acid is heated in a pyrolysis reactor, three thermal decomposition pathways are observed. The major one is well-known and yields acetone, N2 and CO as consequence of the WR. However, two further channels were identified: The formation of 2-diazoethenone, NNCCO, together with acetone and CO2 as the second channel and E-formylketene (OCCHCHCO), propyne, N2 and O2 as a third one. 2-Diazoethenone and E-formylketene were identified based on their threshold photoelectron spectra and accurate ionization energies could be determined. Ionization energies for several isomers of both molecules were also computed. One of the key findings of this study is that acetone is observed upon decomposition of DMA in the neutral as well as in the ion and both point to a Wolff rearrangement to occur. However, the ion is subject to other decomposition channels favored at lower internal energies.
Journal of Chemical Physics | 2016
Bérenger Gans; Fabian Holzmeier; Julia Krüger; Cyril Falvo; Anja Röder; Allan Lopes; Gustavo García; Christa Fittschen; Jean-Christophe Loison; Christian Alcaraz
We report the first experimental observations of X(+) (1)Σ(+)←X (2)Π and a(+) (3)Π←X (2)Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.
Journal of Chemical Physics | 2017
Bérenger Gans; Gustavo García; Fabian Holzmeier; Julia Krüger; Anja Röder; A. Lopes; Christa Fittschen; Jean-Christophe Loison; Christian Alcaraz
The slow photoelectron spectrum of the ethynyl radical has been recorded for the first time by using the DESIRS beamline of the SOLEIL synchrotron facility. Ethynyl was generated using a microwave discharge flow tube. The observation of the X+Π3←XΣ+2 transition allowed the first direct measurement of the adiabatic ionization threshold of this radical (EI = 11.641(5) eV). The experimental results are supported by ab initio calculations. Our preliminary investigation of the cationic ground state potential energy surfaces predicts a non-negligible Renner-Teller effect which has not been discussed previously.
Journal of Physical Chemistry A | 2016
Fabian Holzmeier; Isabella Wagner; Ingo Fischer; Andras Bodi; Patrick Hemberger