Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian Istel is active.

Publication


Featured researches published by Fabian Istel.


Science | 2012

Global Gene Deletion Analysis Exploring Yeast Filamentous Growth

Owen Ryan; Rebecca S. Shapiro; Christoph F. Kurat; David Mayhew; Anastasia Baryshnikova; Brian L. Chin; Zhen-Yuan Lin; Michael J. Cox; Frederick Vizeacoumar; Doris Cheung; Sondra Bahr; Kyle Tsui; Faiza Tebbji; Adnane Sellam; Fabian Istel; Tobias Schwarzmüller; Todd B. Reynolds; Karl Kuchler; David K. Gifford; Malcolm Whiteway; Guri Giaever; Corey Nislow; Michael Costanzo; Anne-Claude Gingras; Robi D. Mitra; Brenda Andrews; Gerald R. Fink; Leah E. Cowen; Charles Boone

Infectious Phenotype The pathogenic yeast Candida albicans needs to adopt a filamentous form to invade tissues. The distantly related yeast species Saccharomyces cerevisiae also takes on a filamentous form for nutrient foraging. Comparing genome-wide deletion libraries between the two species, Ryan et al. (p. 1353) identified genes involved in three different filamentous yeast phenotypes and found unique genes for each of these phenotypes. However, in addition, core genes, including a previously unknown conserved regulator, appear to have homologous roles in regulating filamentous growth in these distantly related yeast species. Yeast genes involved in the dimorphic switch between cell budding and filamentous growth types are identified. The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Σ1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.


PLOS Pathogens | 2014

Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

Tobias Schwarzmüller; Biao Ma; Ekkehard Hiller; Fabian Istel; Michael Tscherner; Sascha Brunke; Lauren Ames; Arnaud Firon; Brian Green; Vitor Cabral; Marina Marcet-Houben; Ilse D. Jacobsen; Jessica Quintin; Katja Seider; Ingrid E. Frohner; Walter Glaser; Helmut Jungwirth; Sophie Bachellier-Bassi; Murielle Chauvel; Ute Zeidler; Dominique Ferrandon; Toni Gabaldón; Bernhard Hube; Christophe d'Enfert; Steffen Rupp; Brendan P. Cormack; Ken Haynes; Karl Kuchler

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.


Antimicrobial Agents and Chemotherapy | 2014

Positions and Numbers of FKS Mutations in Candida albicans Selectively Influence In Vitro and In Vivo Susceptibilities to Echinocandin Treatment

Michaela Lackner; Michael Tscherner; Martin Schaller; Karl Kuchler; Christian Mair; Bettina Sartori; Fabian Istel; Maiken Cavling Arendrup; Cornelia Lass-Flörl

ABSTRACT Candidemia is the fourth most common kind of microbial bloodstream infection, with Candida albicans being the most common causative species. Echinocandins are employed as the first-line treatment for invasive candidiasis until the fungal species is determined and confirmed by clinical diagnosis. Echinocandins block the FKS glucan synthases responsible for embedding β-(1,3)-d-glucan in the cell wall. The increasing use of these drugs has led to the emergence of antifungal resistance, and elevated MICs have been associated with single-residue substitutions in specific hot spot regions of FKS1 and FKS2. Here, we show for the first time the caspofungin-mediated in vivo selection of a double mutation within one allele of the FKS1 hot spot 1 in a clinical isolate. We created a set of isogenic mutants and used a hematogenous murine model to evaluate the in vivo outcomes of echinocandin treatment. Heterozygous and homozygous double mutations significantly enhance the in vivo resistance of C. albicans compared with the resistance seen with heterozygous single mutations. The various FKS1 hot spot mutations differ in the degree of their MIC increase, substance-dependent in vivo response, and impact on virulence. Our results demonstrate that echinocandin EUCAST breakpoint definitions correlate with the in vivo response when a standard dosing regimen is used but cannot predict the in vivo response after a dose escalation. Moreover, patients colonized by a C. albicans strain with multiple mutations in FKS1 have a higher risk for therapeutic failure.


PLOS Pathogens | 2014

The Non-receptor Tyrosine Kinase Tec Controls Assembly and Activity of the Noncanonical Caspase-8 Inflammasome

Florian Zwolanek; Michael Riedelberger; Valentina Stolz; Sabrina Jenull; Fabian Istel; Afitap Derya Köprülü; Wilfried Ellmeier; Karl Kuchler

Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1β. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response.


Frontiers in Microbiology | 2015

Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate.

Sandra Mota; Rosana Alves; Catarina Carneiro; Sónia Duarte Silva; Alistair J. P. Brown; Fabian Istel; Karl Kuchler; Paula Sampaio; Margarida Casal; Mariana Henriques; Sandra Paiva

Candida glabrata is considered a major opportunistic fungal pathogen of humans. The capacity of this yeast species to cause infections is dependent on the ability to grow within the human host environment and to assimilate the carbon sources available. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources, such as carboxylic acids, contributes to the virulence of this fungus. Transcriptional studies on C. glabrata cells identified a similar response, upon nutrient deprivation. In this work, we aimed at analyzing biofilm formation, antifungal drug resistance, and phagocytosis of C. glabrata cells grown in the presence of acetic acid as an alternative carbon source. C. glabrata planktonic cells grown in media containing acetic acid were more susceptible to fluconazole and were better phagocytosed and killed by macrophages than when compared to media lacking acetic acid. Growth in acetic acid also affected the ability of C. glabrata to form biofilms. The genes ADY2a, ADY2b, FPS1, FPS2, and ATO3, encoding putative carboxylate transporters, were upregulated in C. glabrata planktonic and biofilm cells in the presence of acetic acid. Phagocytosis assays with fps1 and ady2a mutant strains suggested a potential role of FPS1 and ADY2a in the phagocytosis process. These results highlight how acidic pH niches, associated with the presence of acetic acid, can impact in the treatment of C. glabrata infections, in particular in vaginal candidiasis.


Scientific Reports | 2018

Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response

Rogatien Charlet; Youri Pruvost; Gael Tumba; Fabian Istel; Daniel Poulain; Karl Kuchler; Boualem Sendid; Samir Jawhara

The gastrointestinal (GI) microbiota acts a natural barrier to the proliferation of opportunistic pathogens. Candida glabrata is an opportunistic yeast pathogen that has adapted to colonize all segments of the human GI tract. We observed an increase in Escherichia coli, Enterococcus faecalis, and Bacteroides vulgatus populations, and a decrease in Lactobacillus johnsonii, Bacteroides thetaiotaomicron, and Bifidobacterium animalis in mice with DSS-induced colitis. This reduction was more pronounced for L. johnsonii during C. glabrata overgrowth. In addition, C. glabrata overgrowth increased mouse mortality and inflammatory parameters, and modulated the expression of intestinal receptors and signaling pathways. The C. glabrata cell wall underwent various changes during the course of C. glabrata colonization, and showed a significant increase in chitin. C. glabrata deficient in chitin synthase-3 induced fewer inflammatory parameters than the parental strain during intestinal inflammation. Oral administration of chitin attenuated the impact of colitis, and reduced the number of aerobic bacteria and C. glabrata overgrowth, while chitinase-3-like protein-1 increased. This study provides evidence that inflammation of the gut alters the microbial balance and leads to C. glabrata cell wall remodeling through an increase in chitin, which is involved in promoting persistence of C. glabrata in the gut.


Bio-protocol | 2015

Genetic Transformation of Candida glabrata by Electroporation.

Fabian Istel; Tobias Schwarzmüller; Michael Tscherner; Karl Kuchler

Here, we report a method for the transformation by electroporation of the human fungal pathogen Candida glabrata (C. glabrata). The protocol can be used for transformations in single well or in 96-well microtiter plates. It has been extensively used to generate a genome-scale gene deletion library using the C. glabrata background recipient strain ATCC2001 (Schwarzmüller et al., 2014).


Methods of Molecular Biology | 2017

Immunological Identification of Fungal Species

Filomena Nogueira; Fabian Istel; Leonel Pereira; Michael Tscherner; Karl Kuchler

Immunodetection is described in this chapter as a technique for producing specific antibodies for antigen detection of the major human fungal pathogens. In the case of Candida spp., heat-killed cells are used to immunize mice over a couple of weeks and then splenocytes are isolated and further fused with myelomas to easily propagate the antibodies produced in the mice. The resulting antibodies follow a purification process where antibody levels and concentrations are determined. Fungal cells are also lysed to obtain whole cell extracts as a prior step for identification of antigens using immunoprecipitation. Finally, this method permits the production of specific antibodies against fungi and the identification of the respective antigens in an in vivo model.


Bio-protocol | 2015

Genetic Transformation of Candida glabrata by Heat Shock.

Fabian Istel; Tobias Schwarzmüller; Michael Tscherner; Karl Kuchler

Here, we report a method for the transformation of Candida glabrata using a heat shock method. The protocol can be used for transformations in single well or in 96-well scale. It has been employed as an alternative method to the electroporation protocol to construct a genome-scale gene deletion collection in the human fungal pathogen Candida glabrata ATCC2001 and related strains. Furthermore, the protocol can be used to generate gene deletions in clinical isolates of Candida glabrata (C. glabrata).


Bio-protocol | 2015

Large-scale Phenotypic Profiling of Gene Deletion Mutants in Candida glabrata.

Fabian Istel; Tobias Schwarzmüller; Michael Tscherner; Karl Kuchler

Here, we describe a method enabling the phenotypic profiling of genome-scale deletion collections of fungal mutants to detect phenotypes for various stress conditions. These stress conditions include among many others antifungal drug susceptibility, temperature-induced and osmotic as well as heavy metal or oxidative stress. The protocol was extensively used to phenotype a collection of gene deletion mutants in the human fungal pathogen Candida glabrata (C. glabrata) (Schwarzmüller et al., 2014).

Collaboration


Dive into the Fabian Istel's collaboration.

Top Co-Authors

Avatar

Karl Kuchler

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Tscherner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabrina Jenull

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Sartori

Innsbruck Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge