Fabian Morsbach
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabian Morsbach.
Investigative Radiology | 2014
Sonja Gordic; Fabian Morsbach; Bernhard Schmidt; Thomas Allmendinger; Thomas Flohr; Daniela B. Husarik; Stephan Baumueller; Rainer Raupach; Paul Stolzmann; Sebastian Leschka; Thomas Frauenfelder; Hatem Alkadhi
PurposeThe purpose of this study was to evaluate the image quality and sensitivity of ultralow radiation dose single-energy computed tomography (CT) with tin filtration for spectral shaping and iterative reconstructions for the detection of pulmonary nodules in a phantom setting. MethodsSingle-energy CT was performed using third-generation dual-source CT (SOMATOM Force; 2 × 192 slices) at 70 kVp, 100 kVp with tin filtration (100Sn kVp), and 150Sn kV with tube current-time product adjustments resulting in standard dose (CT volume dose index, 3.1 mGy/effective dose, 1.3 mSv at a scan length of 30 cm), 1/10th dose level (0.3 mGy/0.13 mSv), and 1/20th dose level (0.15 mGy/0.06 mSv). An anthropomorphic chest phantom simulating an intermediate-sized adult with randomly distributed solid pulmonary nodules of various sizes (2–10 mm; attenuation, 75 HU at 120 kVp) was used. Images were reconstructed with advanced model-based iterative reconstruction (ADMIRE; strength levels 3 and 5) and were compared with those acquired with second-generation dual-source CT at 120 kVp (reconstructed with filtered back projection) and sinogram-affirmed iterative reconstruction (strength level 3) at the lowest possible dose at 120 kVp (CT volume dose index, 0.28 mGy). One blinded reader measured image noise, and 2 blinded, independent readers determined overall image quality on a 5-grade scale (1 = nondiagnostic to 5 = excellent) and marked nodule localization with confidence rates on a 5-grade scale (1 = unsure to 5 = high confidence). The constructional drawing of the phantom served as reference standard for calculation of sensitivity. Two patients were included, for proof of concept, who were scanned with the 100Sn kVp protocol at the 1/10th and 1/20th dose level. ResultsImage noise was highest in the images acquired with second-generation dual-source CT and reconstructed with filtered back projection. At both the 1/10th and 1/20th dose levels, image noise at a tube voltage of 100Sn kVp was significantly lower than in the 70 kVp and 150Sn kV data sets (ADMIRE 3, P < 0.01; ADMIRE 5, P < 0.05). Sensitivity of nodule detection was lowest in images acquired with second-generation dual-source CT at 120 kVp and the lowest possible dose. Protocols at 100Sn kVp and ADMIRE 5 showed highest sensitivity at the 1/10th and 1/20th dose levels. Highest numbers of false-positives occurred in second-generation dual-source CT images (range, 12–15), whereas lowest numbers occurred in the 1/10th and 1/20th dose data sets acquired with third-generation dual-source CT at 100Sn kVp and reconstructed with ADMIRE strength levels 3 and 5 (total of 1 and 0 false-positives, respectively). Diagnostic confidence at 100Sn kVp was significantly higher than at 70 kVp or 150Sn kV (ADMIRE 3, P < 0.05; ADMIRE 5, P < 0.01) at both the 1/10th and 1/20th dose levels. Images of the 2 patients scanned with 100Sn kVp at the 1/10th and 1/20th dose levels were of diagnostic quality. ConclusionsOur study suggests that chest CT for the detection of pulmonary nodules can be performed with third-generation dual-source CT producing high image quality, sensitivity, and diagnostic confidence at a very low effective radiation dose of 0.06 mSv when using a single-energy protocol at 100 kVp with spectral shaping and when using advanced iterative reconstruction techniques.
Radiology | 2013
Fabian Morsbach; Sebastian Bickelhaupt; Guido A. Wanner; Andreas Krauss; Bernhard Schmidt; Hatem Alkadhi
PURPOSE To assess the value of iterative frequency split-normalized (IFS) metal artifact reduction (MAR) for computed tomography (CT) of hip prostheses. MATERIALS AND METHODS This study had institutional review board and local ethics committee approval. First, a hip phantom with steel and titanium prostheses that had inlays of water, fat, and contrast media in the pelvis was used to optimize the IFS algorithm. Second, 41 consecutive patients with hip prostheses who were undergoing CT were included. Data sets were reconstructed with filtered back projection, the IFS algorithm, and a linear interpolation MAR algorithm. Two blinded, independent readers evaluated axial, coronal, and sagittal CT reformations for overall image quality, image quality of pelvic organs, and assessment of pelvic abnormalities. CT attenuation and image noise were measured. Statistical analysis included the Friedman test, Wilcoxon signed-rank test, and Levene test. RESULTS Ex vivo experiments demonstrated an optimized IFS algorithm by using a threshold of 2200 HU with four iterations for both steel and titanium prostheses. Measurements of CT attenuation of the inlays were significantly (P < .001) more accurate for IFS when compared with filtered back projection. In patients, best overall and pelvic organ image quality was found in all reformations with IFS (P < .001). Pelvic abnormalities in 11 of 41 patients (27%) were diagnosed with significantly (P = .002) higher confidence on the basis of IFS images. CT attenuation of bladder (P < .001) and muscle (P = .043) was significantly less variable with IFS compared with filtered back projection and linear interpolation MAR. In comparison with that of FBP and linear interpolation MAR, noise with IFS was similar close to and far from the prosthesis (P = .295). CONCLUSION The IFS algorithm for CT image reconstruction significantly reduces metal artifacts from hip prostheses, improves the reliability of CT number measurements, and improves the confidence for depicting pelvic abnormalities.
Investigative Radiology | 2013
Fabian Morsbach; Lotus Desbiolles; André Plass; Sebastian Leschka; Bernhard Schmidt; Volkmar Falk; Hatem Alkadhi; Paul Stolzmann
ObjectivesThe objective of this study was to assess the value of an integrated circuit (IC) detector, potentially improving spatial resolution by means of reduced cross talk between detector channels, in coronary computed tomographic (CT) angiography regarding image quality and stenosis quantification compared with conventional detector technology. Materials and MethodsIn the ex vivo part of the study, a coronary phantom including 63 defined stenoses and 7 plaque densities (degree of stenosis, 10%–90%; plaque densities, −100 to 1000 Hounsfield unit [HU]) was loaded with contrast agent diluted to 300 HU and placed in an anthropomorphic chest phantom. The phantom was scanned in 0-, 45-, and 90-degree orientations to the z-axis of the CT scanner table. Images were acquired using 128-section dual-source CT equipped with IC and with conventional detector technology. Data were reconstructed with filtered back projection (FBP) and with sinogram-affirmed iterative reconstruction (IR) at a slice thickness of 0.6 mm (increment, 0.4 mm). Data acquired with the IC detector were additionally reconstructed with a slice thickness of 0.5 mm (increment, 0.3 mm) combined with IR. Two readers rated image quality; image noise and degree of stenosis were assessed. In the in vivo part of the study, phantom observations were validated in 30 consecutive patients (11 women; mean [SD] age, 62 [13] years; mean [SD] heart rate, 81 [17] beats per minute) undergoing coronary CT angiography with IC for clinical indications. Images of the patients were reconstructed with FBP (slice thickness, 0.6 mm) and with IR (slice thickness, 0.5 mm) and were assessed for image quality and degree of stenosis.Interreader agreement for image quality was evaluated using intraclass correlation coefficients. The image quality was compared with the Wilcoxon signed rank test. The image noise and the degree of stenosis were compared with the Student t test for paired samples. ResultsThe interreader agreement for the assessment of image quality was substantial (intraclass correlation coefficients, 0.79). The image quality was significantly (P < 0.001) higher for the images acquired with the IC detector as compared with the conventional detector. The image noise with IR was significantly (P = 0.020) reduced for the IC detector as compared with the conventional detector. The IC detector yielded significantly more accurate results regarding stenosis grading when compared with the images acquired with the conventional detector regarding both FBP (mean [SD] error FBP, 12.1% [7.6%] vs 13.7% [7.6%]; P = 0.043) and IR (mean [SD] error IR, 10.5% [6.6%] vs 13.0% [6.9%]; P < 0.001). The images with a slice thickness of 0.5 mm reconstructed with IR (mean [SD] error, 8.8% [5.9%]) obtained by the IC detector significantly (P < 0.001) improved measurement accuracy in the phantom as compared with FBP with a slice thickness of 0.6 mm (mean [SD] error, 12.1% [7.6%]). In the patients, we found a significantly (P < 0.001) higher image quality, and stenoses were quantified significantly (P = 0.009) smaller with FBP as compared with IR (mean stenosis, 47.6% vs 42.1%; mean difference, 5.5%). ConclusionsOur ex vivo and patient study indicates significantly reduced image noise and more accurate stenosis quantification in coronary CT angiography when acquiring data using an IC detector and combining IR with high-resolution images as compared with conventional detector technology and FBP reconstructions.
Investigative Radiology | 2013
Fabian Morsbach; Thomas Pfammatter; Caecilia S. Reiner; Michael A. Fischer; Bert-Ram Sah; Sebastian Winklhofer; Ernst Klotz; Thomas Frauenfelder; Alexander Knuth; Burkhardt Seifert; Niklaus Schaefer; Hatem Alkadhi
PurposeThe purpose of this study was to evaluate prospectively, in patients with liver metastases, the ability of computed tomographic (CT) perfusion to predict the morphologic response and survival after transarterial radioembolization (TARE). MethodsThirty-eight patients (22 men; mean [SD] age, 63 [12] years) with otherwise therapy-refractory liver metastases underwent dynamic, contrast-enhanced CT perfusion within 1 hour before treatment planning catheter angiography, for calculation of the arterial perfusion (AP) of liver metastases, 20 days before TARE with Yttrium-90 microspheres. Treatment response was evaluated morphologically on follow-up imaging (mean, 114 days) on the basis of the Response Evaluation Criteria in Solid Tumors criteria (version 1.1). Pretreatment CT perfusion was compared between responders and nonresponders. One-year survival was calculated including all 38 patients using the Kaplan-Meier curves; the Cox proportional hazard model was used for calculating predictors of survival. ResultsFollow-up imaging was not available in 11 patients because of rapidly deteriorating health or death. From the remaining 27, a total of 9 patients (33%) were classified as responders and 18 patients (67%) were classified as nonresponders. A significant difference in AP was found on pretreatment CT perfusion between the responders and the nonresponders to the TARE (P < 0.001). Change in tumor size on the follow-up imaging correlated significantly and negatively with AP before the TARE (r = −0.60; P = 0.001). Receiver operating characteristics analysis of AP in relation to treatment response revealed an area under the curve of 0.969 (95% confidence interval, 0.911–1.000; P < 0.001). A cutoff AP of 16 mL per 100 mL/min was associated with a sensitivity of 100% (9/9) (95% CI, 70%–100%) and a specificity of 89% (16/18) (95% CI, 62%–96%) for predicting therapy response. A significantly higher 1-year survival after the TARE was found in the patients with a pretreatment AP of 16 mL per 100 mL/min or greater (P = 0.028), being a significant, independent predictor of survival (hazard ratio, 0.101; P = 0.015). ConclusionsArterial perfusion of liver metastases, as determined by pretreatment CT perfusion imaging, enables prediction of short-term morphologic response and 1-year survival to TARE.
Clinical Radiology | 2014
Sebastian Winklhofer; E. Benninger; C. Spross; Fabian Morsbach; S. Rahm; Steffen Ross; B. Jost; Michael J. Thali; Paul Stolzmann; Hatem Alkadhi; Roman Guggenberger
AIM To assess the value of dual-energy computed tomography (DECT) and an iterative frequency split-normalized metal artefact reduction (IFS-MAR) algorithm compared to filtered back projections (FBP) from single-energy CT (SECT) for artefact reduction in internally fixated humeral fractures. MATERIALS AND METHODS Six internally fixated cadaveric humeri were examined using SECT and DECT. Data were reconstructed using FBP, IFS-MAR, and mono-energetic DECT extrapolations. Image analysis included radiodensity values and qualitative evaluation of artefacts, image quality, and level of confidence for localizing screw tips. RESULTS Radiodensity values of streak artefacts were significantly different (p < 0.05) between FBP (-104 ± 222) and IFS-MAR (73 ± 122), and between FBP and DECT (32 ± 151), without differences between IFS-MAR and DECT (p < 0.553). Compared to FBP, qualitative artefacts were significantly reduced using IFS-MAR (p < 0.001) and DECT (p < 0.05), without significant differences between IFS-MAR and DECT (p < 0.219). Image quality significantly (p = 0.016) improved for IFS-MAR and DECT compared to FBP, without significant differences between IFS-MAR and DECT (p < 0.553). The level of confidence for screw tip localization was assessed as best for DECT in all cases. CONCLUSION Both IFS-MAR in SECT and mono-energetic DECT produce improved image quality and a reduction of metal artefacts. Screw tip positions can be most confidently assessed using DECT.
Journal of Vascular and Interventional Radiology | 2014
Caecilia S. Reiner; Fabian Morsbach; Bert-Ram Sah; Gilbert Puippe; Niklaus Schaefer; Thomas Pfammatter; Hatem Alkadhi
PURPOSE To evaluate computed tomography (CT) perfusion for assessment of early treatment response after transarterial radioembolization of patients with liver malignancy. MATERIALS AND METHODS Dynamic contrast-enhanced CT liver perfusion was performed before and 4 weeks after transarterial radioembolization in 40 patients (25 men and 15 women; mean age, 64 y ± 11; range, 35-80 y) with liver metastases (n = 27) or hepatocellular carcinoma (HCC) (n = 13). Arterial perfusion (AP) of tumors derived from CT perfusion and tumor diameters were measured on CT perfusion before and after transarterial radioembolization. Success of transarterial radioembolization was evaluated on morphologic follow-up imaging (median follow-up time, 4 mo) based on Response Evaluation Criteria in Solid Tumors (Version 1.1). CT perfusion parameters before and after transarterial radioembolization for different response groups were compared. Kaplan-Meier curves were plotted to illustrate overall 1-year survival rates. RESULTS Liver metastases showed significant differences in AP before and after transarterial radioembolization in responders (P < .05) but not in nonresponders (P = .164). In HCC, AP values before and after transarterial radioembolization were not significantly different in responders and nonresponders (P = .180 and P = .052). Tumor diameters were not significantly different on CT perfusion before and after transarterial radioembolization in responders and nonresponders with liver metastases and HCC (P = .654, P = .968, P = .148, P = .164). In patients with significant decrease of AP in liver metastases after transarterial radioembolization, 1-year overall survival was significantly higher than in patients showing no reduction of AP. CONCLUSIONS CT perfusion showed early reduction of AP in liver metastases responding to transarterial radioembolization; tumor diameter remained unchanged early after treatment. No significant early treatment response to transarterial radioembolization was found in patients with HCC. In patients with liver metastases, a decrease of AP after transarterial radioembolization was associated with a higher 1-year overall survival rate.
Investigative Radiology | 2014
Fabian Morsbach; Moritz C. Wurnig; Daniel Müller; Bernhard Krauss; Johannes Georg Korporaal; Hatem Alkadhi
PurposeThe purposes of this study were to demonstrate the feasibility and accuracy of single-source dual-energy (DE) computed tomography (CT) with sequential data acquisition and a coregistration motion correction algorithm for urinary stone characterization and to evaluate the value of iterative reconstructions (IRs) in DE imaging. Materials and MethodsThirty-five urinary stones were placed in cylindrical phantoms with diameters of 30 and 40 cm. The phantoms were scanned on a 64-section CT machine with a single-source DE protocol consisting of 2 sequential acquisitions at 80 and 140 kilovolt (peak). The phantom was moved between the 80– and 140–kilovolt (peak) scans. Images were reconstructed with weighted filtered back projection (FBP) and with IR, and data were coregistered. Two independent and blinded readers assessed data sets for stone detection, overall image quality, and visibility of stones. Image noise and Hounsfield unit values of the stones were measured, and the DE index was calculated. In addition, the data sets were analyzed on color-coded images using the standard postprocessing software for differentiating uric acid- (UA) from non–UA-containing stones. ResultsThe motion correction algorithm achieved a good coregistration of the 2 scans with different energy levels. Both readers detected all stones on all data sets with both reconstruction types. The overall image quality was rated significantly higher in IR images in the 40-cm phantom as compared with that in FBP images (P < 0.05), whereas no significant difference was found for the 30-cm phantom. Visibility of stones was rated significantly higher for both the 30- and 40-cm phantoms on IR as compared with that on FBP images, an effect that was pronounced for UA stones (P < 0.05). Noise was significantly reduced by up to 31% in the 40-cm phantom when using IR as compared with FBP (P < 0.001). The DE index was similar in the FBP and IR data sets for the 30- (P = 0.116) and 40-cm phantoms (P = 0.544), being significantly different between UA-containing stones, cystine, and struvite stones as well as stones of other compositions (P < 0.001). The postprocessing software classified all stones correctly as UA- or non–UA-containing stones on color-coded images. In the 40-cm phantom, false-positively colored voxels were found in the FBP data sets, which were not seen when using IR instead. ConclusionsOur study indicates that single-source dual-energy CT with sequential acquisitions at different energy levels and a coregistration motion correction algorithm is feasible and accurate for characterizing urinary stone composition on the basis of phantom evaluation. As compared with reconstructions with FBP, the use of IR in dual-energy CT reduces noise, improves overall image quality and visibility of stones particularly in large phantoms, and helps to avoid false classifications of urinary stones.
Investigative Radiology | 2014
Tim Finkenstaedt; Fabian Morsbach; Maurizio Calcagni; Magdalena Vich; Christian W. A. Pfirrmann; Hatem Alkadhi; Val M. Runge; Gustav Andreisek; Roman Guggenberger
ObjectivesThe aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Materials and MethodsImaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact–induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen &kgr;) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. ResultsArtifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P < 0.05). No significant differences in artifact extent among different screw types and scanning positions were noted (P > 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen &kgr; = 0.76–0.78). ConclusionsBoth MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.
American Journal of Roentgenology | 2014
Fabian Morsbach; Sebastian Bickelhaupt; Susan Rätzer; Bernhard Schmidt; Hatem Alkadhi
OBJECTIVE The purpose of this article was to assess the effect of an integrated circuit (IC) detector for abdominal CT on image quality. MATERIALS AND METHODS In the first study part, an abdominal phantom was scanned with various extension rings using a CT scanner equipped with a conventional discrete circuit (DC) detector and on the same scanner with an IC detector (120 kVp, 150 effective mAs, and 75 effective mAs). In the second study part, 20 patients were included who underwent abdominal CT both with the IC detector and previously at similar protocol parameters (120 kVp tube current-time product and 150 reference mAs using automated tube current modulation) with the DC detector. Images were reconstructed with filtered back projection. RESULTS Image quality in the phantom was higher for images acquired with the IC compared with the DC detector. There was a gradually increasing noise reduction with increasing phantom sizes, with the highest (37% in the largest phantom) at 75 effective mAs (p < 0.001). In patients, noise was overall significantly (p = 0.025) reduced by 6.4% using the IC detector. Similar to the phantom, there was a gradual increase in noise reduction to 7.9% in patients with a body mass index of 25 kg/m(2) or lower (p = 0.008). Significant correlation was found in patients between noise and abdominal diameter in DC detector images (r = 0.604, p = 0.005), whereas no such correlation was found for the IC detector (r = 0.427, p = 0.060). CONCLUSION Use of an IC detector in abdominal CT improves image quality and reduces image noise, particularly in overweight and obese patients. This noise reduction has the potential for dose reduction in abdominal CT.
Radiology | 2016
Kai Higashigaito; Tabea Schmid; Gilbert Puippe; Fabian Morsbach; Mario Lachat; Burkhardt Seifert; Thomas Pfammatter; Hatem Alkadhi; Daniela B. Husarik
Purpose To prospectively develop individualized low-volume contrast media (CM) protocols adapted to tube voltage in patients undergoing computed tomographic (CT) angiography of the aorta. Materials and Methods The study was approved by the institutional review board and local ethics committee. All patients provided written informed consent. CT angiography was performed by using automated attenuation-based tube voltage selection (ATVS) (range, 70-150 kVp; 10-kVp increments). Iodine attenuation curves from an ex vivo experiment in a phantom were used to design CM protocols for CT angiography of the thoracoabdominal aorta in 129 consecutive patients (hereafter, cohort A). Further modified CM protocols based on results in cohort A were designed with the aim of homogeneous vascular attenuation of 300-350 HU across tube voltages and were applied to another 61 consecutive patients (cohort B). Three independent blinded radiologists assessed subjective image quality, and one reader determined objective image quality. The Kruskal-Wallis test was performed to test for differences in subjective image quality, and linear regression was performed to test for differences in objective image quality between the automatically selected tube voltages. Results Experiments revealed tube voltage-dependent iodine attenuation curves, which were used to determine the CM protocols in cohort A; these ranged from 68 mL at 110 kVp to 45 mL at 80 kVp. In both cohorts, ATVS selected 80 kVp in 62 patients, 90 kVp in 84, 100 kVp in 33, and 110 kVp in 11. In cohort A, image quality that was satisfactory or better was attained in 126 (98%) of 129 patients who had no significant differences in subjective image quality between tube voltages (P = .106) but who did have significant differences in attenuation and contrast-to-noise ratio (CNR) (P < .001 for both). In cohort B, the further-modified CM protocol (from 33 mL at 80 kVp to 68 mL at 110 kVp) yielded image quality that was satisfactory or better in all 61 (100%) patients, without significant differences in subjective image quality (P = .178), and without significant differences between tube voltage and attenuation (P = .108), noise (P = .250), or CNR (P = .698). Conclusion Individualized low-volume CM protocols based on automatically selected tube voltages are feasible and yield diagnostic image quality for CT angiography of the aorta. (©) RSNA, 2016 Online supplemental material is available for this article.