Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian V. Filipp is active.

Publication


Featured researches published by Fabian V. Filipp.


Journal of Biological Chemistry | 2011

Comparative Metabolic Flux Profiling of Melanoma Cell Lines BEYOND THE WARBURG EFFECT

David A. Scott; Adam D. Richardson; Fabian V. Filipp; Christine A. Knutzen; Gary G. Chiang; Ze'ev Ronai; Andrei L. Osterman; Jeffrey W. Smith

Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the “reverse” (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma.


Pigment Cell & Melanoma Research | 2012

Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma.

Fabian V. Filipp; Boris I. Ratnikov; Jessica De Ingeniis; Jeffrey W. Smith; Andrei L. Osterman; David A. Scott

In this perspective, we revise the historic notion that cancer is a disease of mitochondria. We summarize recent findings on the function and rewiring of central carbon metabolism in melanoma. Metabolic profiling studies using stable isotope tracers show that glycolysis is decoupled from the tricarboxylic acid (TCA) cycle. This decoupling is not ‘dysfunction’ but rather an alternate wiring required by tumor cells to remain metabolically versatile. In large part, this requirement is met by glutamine feeding the TCA cycle as an alternative source of carbon. Glutamine is also used in non‐conventional ways, like traveling in reverse through the TCA flux to feed fatty acid biosynthesis. Biosynthetic networks linked with non‐essential amino acids alanine, serine, arginine, and proline are also significantly impacted by the use of glutamine as an alternate carbon source.


Oncotarget | 2015

Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes

Jessamy Tiffen; Dilini Gunatilake; Stuart J. Gallagher; Kavitha Gowrishankar; Anja Heinemann; Carleen Cullinane; Ken Dutton-Regester; Gulietta M. Pupo; Dario Strbenac; Jean Y. Yang; Jason Madore; Graham J. Mann; Nicholas K. Hayward; Grant A. McArthur; Fabian V. Filipp; Peter Hersey

The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown. We show that inhibition of EZH2 has potent effects on the growth of both wild-type and EZH2 mutant human melanoma in vitro particularly in cell lines harboring the EZH2Y646 activating mutation. This was associated with cell cycle arrest, reduced proliferative capacity in both 2D and 3D culture systems, and induction of apoptosis. The latter was caspase independent and mediated by the release of apoptosis inducing factor (AIFM1) from mitochondria. Gene expression arrays showed that several well characterized tumor suppressor genes were reactivated by EZH2 inhibition. This included activating transcription factor 3 (ATF3) that was validated as an EZH2 target gene by ChIP-qPCR. These results emphasize a critical role for EZH2 in the proliferation and viability of melanoma and highlight the potential for targeted therapy against EZH2 in treatment of patients with melanoma.


Journal of Carcinogenesis | 2013

Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator.

Fabian V. Filipp

Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2) is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor activation-induced tumorigenesis. These biochemical activities are controlled by a shift in the oligomeric state of PKM2 that includes acetylation, oxidation, phosphorylation, prolyl hydroxylation and sumoylation. Metabolically active PKM2 tetramer is allosterically regulated and responds to nutritional and stress signals. Metabolically inactive PKM2 dimer is imported into the nucleus and can function as protein kinase stimulating transcription. A systems biology approach to PKM2 at the genome, transcriptome, proteome, metabolome and fluxome level reveals how differences in biomolecular structure translate into a global rewiring of cancer metabolism. Cancer systems biology takes us beyond the Warburg effect, opening unprecedented therapeutic opportunities.


Scientific Reports | 2015

Cancer systems biology of TCGA SKCM: Efficient detection of genomic drivers in melanoma

Jian Guan; Rohit Gupta; Fabian V. Filipp

We characterized the mutational landscape of human skin cutaneous melanoma (SKCM) using data obtained from The Cancer Genome Atlas (TCGA) project. We analyzed next-generation sequencing data of somatic copy number alterations and somatic mutations in 303 metastatic melanomas. We were able to confirm preeminent drivers of melanoma as well as identify new melanoma genes. The TCGA SKCM study confirmed a dominance of somatic BRAF mutations in 50% of patients. The mutational burden of melanoma patients is an order of magnitude higher than of other TCGA cohorts. A multi-step filter enriched somatic mutations while accounting for recurrence, conservation, and basal rate. Thus, this filter can serve as a paradigm for analysis of genome-wide next-generation sequencing data of large cohorts with a high mutational burden. Analysis of TCGA melanoma data using such a multi-step filter discovered novel and statistically significant potential melanoma driver genes. In the context of the Pan-Cancer study we report a detailed analysis of the mutational landscape of BRAF and other drivers across cancer tissues. Integrated analysis of somatic mutations, somatic copy number alterations, low pass copy numbers, and gene expression of the melanogenesis pathway shows coordination of proliferative events by Gs-protein and cyclin signaling at a systems level.


Scientific Reports | 2016

Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines

Stephen W. Wilson; Jianfei Qi; Fabian V. Filipp

Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for proteins such as transcription factors or DNA modifying enzymes. The androgen response element (ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for expansion and refinement of the ARE. We classified AREs according to their degeneracy and their transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the transcriptional influence of ARE half sites can be modulated by cooperating factors.


Neoplasia | 2016

Somatic Copy Number Amplification and Hyperactivating Somatic Mutations of EZH2 Correlate With DNA Methylation and Drive Epigenetic Silencing of Genes Involved in Tumor Suppression and Immune Responses in Melanoma

Jessamy Tiffen; Stephen Wilson; Stuart J. Gallagher; Peter Hersey; Fabian V. Filipp

The epigenetic modifier EZH2 is in the center of a repressive complex controlling differentiation of normal cells. In cancer EZH2 has been implicated in silencing tumor suppressor genes. Its role in melanoma as well as target genes affected by EZH2 are poorly understood. In view of this we have used an integrated systems biology approach to analyze 471 cases of skin cutaneous melanoma (SKCM) in The Cancer Genome Atlas (TCGA) for mutations and amplifications of EZH2. Identified changes in target genes were validated by interrogation of microarray data from melanoma cells treated with the EZH2 inhibitor GSK126. We found that EZH2 activation by mutations, gene amplification and increased transcription occurred in about 20% of the cohort. These alterations were associated with significant hypermethylation of DNA and significant downregulation of 11% of transcripts in patient RNASeq data. GSK126 treatment of melanoma lines containing EZH2 activation reversed such transcriptional repression in 98 candidate target genes. Gene enrichment analysis revealed genes associated with tumor suppression, cell differentiation, cell cycle inhibition and repression of metastases as well as antigen processing and presentation pathways. The identified changes in EZH2 were associated with an adverse prognosis in the TCGA dataset. These results suggest that inhibiting of EZH2 is a promising therapeutic avenue for a substantial fraction of melanoma patients.


Cancer and Metastasis Reviews | 2017

Precision medicine driven by cancer systems biology

Fabian V. Filipp

Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.


Cancer and Metabolism | 2017

Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities

Nathan J. Lanning; Joshua P. Castle; Simar J. Singh; Andre N. Leon; Elizabeth A. Tovar; Amandeep Sanghera; Jeffrey P. MacKeigan; Fabian V. Filipp; Carrie R. Graveel

BackgroundAmong breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities.MethodsWe quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects.ResultsTNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases.ConclusionsSimilar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer promise for effective therapeutic targeting for TNBC patients.


Oncotarget | 2017

The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells

Stephen W. Wilson; Lingling Fan; Natasha Sahgal; Jianfei Qi; Fabian V. Filipp

The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional networks in a variety of biological processes such as spermatogenesis, metabolism, stem cell activity, and tumor progression. We matched transcriptomic and ChIP-Seq profiles to decipher a genome-wide regulatory network of epigenetic control by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 lysine 9 (H3K9) methylation marks show global histone demethylation effects of KDM3A. Combined assessment of histone demethylation events and gene expression changes presented major transcriptional activation suggesting that distinct oncogenic regulators may synergize with the epigenetic patterns by KDM3A. Pathway enrichment analysis of cells with KDM3A knockdown prioritized androgen signaling indicating that KDM3A plays a key role in regulating androgen receptor activity. Matched ChIP-Seq and knockdown experiments of KDM3A in combination with ChIP-Seq of the androgen receptor resulted in a gain of H3K9 methylation marks around androgen receptor binding sites of selected transcriptional targets in androgen signaling including positive regulation of KRT19, NKX3-1, KLK3, NDRG1, MAF, CREB3L4, MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HSP90AA1, HIF1A, and ACSL3. The cancer systems biology analysis of KDM3A-dependent genes identifies an epigenetic and transcriptional network in androgen response, hypoxia, glycolysis, and lipid metabolism. Genome-wide ChIP-Seq data highlights specific gene targets and the ability of epigenetic master regulators to control oncogenic pathways and cancer progression.

Collaboration


Dive into the Fabian V. Filipp's collaboration.

Top Co-Authors

Avatar

Simar J. Singh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil F. Box

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen Wilson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Liu-Smith

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge