Fabiana Aparecida Rodrigues
Empresa Brasileira de Pesquisa Agropecuária
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabiana Aparecida Rodrigues.
BMC Genomics | 2011
Franceli Rodrigues Kulcheski; Luiz Fv de Oliveira; Lorrayne Gomes Molina; Mauricio Pereira Almerão; Fabiana Aparecida Rodrigues; Juliana Marcolino; Joice F Barbosa; Renata Stolf-Moreira; Alexandre Lima Nepomuceno; Francismar Corrêa Marcelino-Guimarães; Ricardo V. Abdelnoor; Leandro Costa do Nascimento; Marcelo Falsarella Carazzolle; Gonçalo Ag Pereira; Rogério Margis
BackgroundSmall RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs) act in several plant pathways associated with tissue proliferation, differentiation, and development and in response to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa sequencing.ResultsThe libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs. From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype, most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved and novel miRNAs families.ConclusionsValidation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.
PLOS ONE | 2014
Juliana Marcolino-Gomes; Fabiana Aparecida Rodrigues; Renata Fuganti-Pagliarini; Claire Bendix; Thiago Jonas Nakayama; Brandon Celaya; Maria Cristina Neves de Oliveira; Frank G. Harmon; Alexandre Lima Nepomuceno
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.
PLOS ONE | 2013
Juliana Marcolino-Gomes; Fabiana Aparecida Rodrigues; Maria Cristina Neves de Oliveira; José Renato Bouças Farias; Norman Neumaier; Ricardo V. Abdelnoor; Francismar Corrêa Marcelino-Guimarães; Alexandre Lima Nepomuceno
Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms. Here, we analyzed the expression patterns of ten APETALA2/Ethylene Responsive Element Binding-like (AP2/EREB-like) transcription factors in two soybean genotypes (BR16: drought-sensitive; and Embrapa 48: drought-tolerant). According to phylogenetic and domain analyses, these genes can be included in the DREB and ERF subfamilies. We also analyzed a GmDRIP-like gene that encodes a DREB negative regulator. We detected the up-regulation of 9 GmAP2/EREB-like genes and identified transcriptional differences that were dependent on the levels of the stress applied and the tissue type analyzed (the expression of the GmDREB1F-like gene, for example, was four times higher in roots than in leaves). The GmDRIP-like gene was not induced by water deficit in BR16 during the longest periods of stress, but was significantly induced in Embrapa 48; this suggests a possible genetic/molecular difference between the responses of these cultivars to water deficit stress. Additionally, RNAseq gene expression analysis over a 24-h time course indicates that the expression patterns of several GmDREB-like genes are subject to oscillation over the course of the day, indicating a possible circadian regulation.
Genetics and Molecular Biology | 2012
Nina da Mota Soares-Cavalcanti; Luis Carlos Belarmino; Ederson Akio Kido; Valesca Pandolfi; Francismar Corrêa Marcelino-Guimarães; Fabiana Aparecida Rodrigues; Gonçalo Amarante Guimarães Pereira; Ana Maria Benko-Iseppon
Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine max HSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatula and Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotus and Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs. controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions.
PLOS ONE | 2013
José Ribamar Costa Ferreira Neto; Valesca Pandolfi; Francismar Corrêa Marcelino Guimaraes; Ana Maria Benko-Iseppon; Cynara Romero; Roberta Lane de Oliveira Silva; Fabiana Aparecida Rodrigues; Ricardo V. Abdelnoor; Alexandre Lima Nepomuceno; Ederson Akio Kido
Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO) categories for the tolerant accession revealed the expression “protein binding” as the most represented for “Molecular Function”, whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to “hormone response” (LOX, ERF1b, XET), “water response” (PUB, BMY), “salt stress response” (WRKY, MYB) and “oxidative stress response” (PER) figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY) validated by RT-qPCR (four different time points) confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with important differences between both accessions.
Genetics and Molecular Biology | 2012
Fabiana Aparecida Rodrigues; Juliana Marcolino-Gomes; Josirlei de Fátima Corrêa Carvalho; Leandro Costa do Nascimento; Norman Neumaier; José Renato Bouças Farias; Marcelo Falsarella Carazzolle; Francismar Corrêa Marcelino; Alexandre Lima Nepomuceno
Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.
PLOS ONE | 2015
Juliana Marcolino-Gomes; Fabiana Aparecida Rodrigues; Renata Fuganti-Pagliarini; Thiago Jonas Nakayama; Rafaela Ribeiro Reis; José Renato Bouças Farias; Frank G. Harmon; Mayla Daiane Corrêa Molinari; Alexandre Lima Nepomuceno
The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expression quantification in combined studies on drought stress and diurnal oscillations. Recently, water deficit responses have been associated with circadian clock oscillations at the transcription level, revealing the existence of hitherto unknown processes and increasing the demand for studies on plant responses to drought stress and its oscillation during the day. We performed data mining from a transcriptome-wide background using microarrays and RNA-seq databases to select an unpublished set of candidate reference genes, specifically chosen for the normalization of gene expression in studies on soybean under both drought stress and diurnal oscillations. Experimental validation and stability analysis in soybean plants submitted to drought stress and sampled during a 24 h timecourse showed that four of these newer reference genes (FYVE, NUDIX, Golgin-84 and CYST) indeed exhibited greater expression stability than the conventionally used housekeeping genes (ELF1-β and β-actin) under these conditions. We also demonstrated the effect of using reference candidate genes with different stability values to normalize the relative expression data from a drought-inducible soybean gene (DREB5) evaluated in different periods of the day.
Plant Molecular Biology Reporter | 2016
Juliane Prela Marinho; Norihito Kanamori; Leonardo Cesar Ferreira; Renata Fuganti-Pagliarini; Josirley de Fátima Corrêa Carvalho; Rafaela Alves Freitas; Silvana Regina Rockenbach Marin; Fabiana Aparecida Rodrigues; Liliane Marcia Mertz-Henning; José Renato Bouças Farias; Norman Neumaier; Maria Cristina Neves de Oliveira; Francismar Corrêa Marcelino-Guimarães; Takuya Yoshida; Yasunari Fujita; Kazuko Yamaguchi-Shinozaki; Kazuo Nakashima; Alexandre Lima Nepomuceno
Drought is one of the major factors limiting crop productivity worldwide. Currently, the techniques of genetic engineering are powerful tools for the development of drought-tolerant plants, once they allow for the modification of expression patterns of genes responsive to drought. Within this context, transcription factors recognize specific DNA sequences in the regulatory region of target genes, and thereby regulate their expression. AREB is a transcription factor in the basic leucine zipper family, which binds to the ABRE element in the promoter region of genes induced by abscisic acid and drought. In this study, soybean plants transformed with the 35S:AtAREB1 construct were submitted to drought under greenhouse conditions. AtAREB1 expression was observed in the transgenic lines 1Ea2939 and 1Eb2889, but not in the event 1Ea15 and, under control of the CaMV 35S promoter, did not cause dwarfism and resulted in a higher survival rate of transformed plants after drought and rehydration. Moreover, 1Ea2939 and 1Eb2889 plants presented a greater total number of pods and seeds and increased dry matter content of seeds. The best performance of the transgenic lines 1Ea2939 and 1Eb2889 relative to BR 16 plants (wild type) and to event 1Ea15 might be related to mechanisms of drought prevention through reduced stomatal conductance and leaf transpiration under control conditions. Changes in the expression profile of phosphatases and kinases may also be involved. Such results suggest that the constitutive overexpression of the transcription factor AtAREB1 leads to an improved capacity of the soybean crop to cope with drought with no yield losses.
Frontiers in Plant Science | 2017
Renata Fuganti-Pagliarini; Leonardo Cesar Ferreira; Fabiana Aparecida Rodrigues; Silvana Regina Rockenbach Marin; Mayla Daiane Corrêa Molinari; Juliana Marcolino-Gomes; Liliane Marcia Mertz-Henning; José Renato Bouças Farias; Maria Cristina Neves de Oliveira; Norman Neumaier; Norihito Kanamori; Yasunari Fujita; Junya Mizoi; Kazuo Nakashima; Kazuko Yamaguchi-Shinozaki; Alexandre Lima Nepomuceno
Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.
PLOS ONE | 2017
Thiago Jonas Nakayama; Fabiana Aparecida Rodrigues; Norman Neumaier; Juliana Marcolino-Gomes; Thaís R. Santiago; Eduardo F. Formighieri; Marcos Fernando Basso; José Renato Bouças Farias; Beatriz M. Emygdio; Ana Oliveira; Ângela D. Campos; Aluízio Borém; Frank G. Harmon; Liliane Marcia Mertz-Henning; Alexandre Lima Nepomuceno
Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.
Collaboration
Dive into the Fabiana Aparecida Rodrigues's collaboration.
National Council for Scientific and Technological Development
View shared research outputsMaria Cristina Neves de Oliveira
Empresa Brasileira de Pesquisa Agropecuária
View shared research outputsFrancismar Corrêa Marcelino-Guimarães
Empresa Brasileira de Pesquisa Agropecuária
View shared research outputs