Fabiana L. Lo Nostro
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabiana L. Lo Nostro.
Anatomy and Embryology | 2006
Matías Pandolfi; Fabiana L. Lo Nostro; Akio Shimizu; Andrea G. Pozzi; Fernando J. Meijide; Graciela Rey Vázquez; M. Cristina Maggese
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) expressing cells were detected in pituitary, brain and ovary of the Perciform cichlid fish Cichlasoma dimerus. This detection was carried out by immunohistochemistry (IHC) and Western blot techniques using antisera of the Cyprinodontiform Fundulus heteroclitus raised against the conservative region of the teleost βFSH and the βLH subunits. The estimated molecular weights were 24xa0kDa for LH and 19 and 15xa0kDa for FSH. In the adult pituitary, both cell types were distributed along mid and ventral zones of the proximal pars distalis (PPD, mid-immunoreactive cells), and along the ventral and dorsal external border of the pars intermedia (PI, high-immunoreactive cells). Double IHC showed that FSH and LH are mainly expressed in different pituitary cells. FSH cells were detected in the pituitary around day 21 after hatching (ah) (prior to sex differentiation), while LH cells were detected by day 60xa0ah (during the sexual differentiation period). A correlation between gonadal sex differentiation and FSH was demonstrated in a 15xa0days organ culture system. FSH and LH neurons were localized in the nucleus lateralis tuberis and their fibers project through the ventral hypothalamus, preoptic area and neurohypophysis. FSH neurons differentiated on day 21xa0ah, while LH neurons appeared on day 15xa0ah. In the ovary, the immunoreactivity for both FSH and LH was restricted to the cytoplasm of previtellogenic and early vitellogenic oocytes.
Cell and Tissue Research | 2005
Matías Pandolfi; José Antonio Muñoz Cueto; Fabiana L. Lo Nostro; Jodi L. Downs; Dante A. Paz; María Cristina Maggese; Henryk F. Urbanski
The distribution of cells that express three prepro-gonadotropin-releasing hormones (GnRH), corresponding to salmon GnRH, sea bream GnRH (sbGnRH), and chicken II GnRH, was studied in the brain and pituitary of the South American cichlid fish, Cichlasoma dimerus. Although the ontogeny and distribution of GnRH neuronal systems have previously been examined immunohistochemically with antibodies and antisera against the various GnRH decapeptides, we have used antisera against various perciform GnRH-associated peptides (GAPs) and riboprobes to various perciform GnRH+GAPs. The results demonstrate that: (1) the GnRH neuronal populations in the forebrain (salmon and sea bream GAPs; sGAP and sbGAP, respectively) show an overlapping pattern along the olfactory bulbs, nucleus olfacto-retinalis, ventral telencephalon, and preoptic area; (2) projections with sGAP are mainly located in the forebrain and contribute to the pituitary innervation, with projections containing chicken GAP II being mainly distributed along the mid and hindbrain and not contributing to pituitary innervation, whereas sbGAP projections are restricted to the ventral forebrain, being the most important molecular form in relation to pituitary innervation; (3) sbGnRH (GnRH I) neurons have an olfactory origin; (4) GAP antibodies and GAP riboprobes are valuable tools for the study of various GnRH systems, by avoiding the cross-reactivity problems that occur when using GnRH antibodies and GnRH riboprobes alone.
Archives of Environmental Contamination and Toxicology | 2011
Yanina G. Piazza; Matías Pandolfi; Fabiana L. Lo Nostro
Endocrine-disrupting chemicals can influence the hypothalamus–pituitary–gonad axis and possibly affect reproduction in vertebrates. We analyzed the effect of 30-day endosulfan (ES) exposure in sexually undifferentiated larvae of the cichlid fish Cichlasoma dimerus. The number, area, mean cytoplasmic and nuclear diameter, and mean cytoplasmic optical density of gonadotropin-releasing hormone (GnRH) I, II, and III immunoreactive (ir-) neurons and β follicle-stimulating hormone (βFSH) ir-cells were measured. Animals exposed to the highest ES concentration (0.1xa0μg/l) showed a decrease in GnRH I nucleus/cytoplasm area ratio upon exposure. Nuclear area and mean nuclear diameter of βFSH ir-cells was higher in ES treated fish. βFSH nucleus/cytoplasm area ratio was high in exposed animals, and animals exposed to 0.1xa0μg/l ES showed smaller mean cytoplasmic optical density. These findings suggest that ES affects GnRH I and βFSH protein synthesis/release. However, these responses seem to be insufficient to affect gonadal differentiation at this stage of development.
Zoomorphology | 2008
Juliana Giménez; John M. Healy; Gladys N. Hermida; Fabiana L. Lo Nostro; Pablo E. Penchaszadeh
The ultrastructure of mature spermatozoa is investigated for the first time in the Volutidae, based on the commercially significant South American species Zidona dufresnei (Donovan, 1823) (fresh material) and supplemented with observations on testicular (museum) material of the deep sea New Zealand species Provocator mirabilis (Finlay, 1926). Euspermatozoa of Z. dufresnei (ex sperm duct) consist of: (1) a tall-conical acrosomal vesicle (with short basal invagination, constricted anteriorly) which is flattened anteriorly and associated with an axial rod, centrally perforate basal plate and short accessory membrane; (2) a rod-shaped, solid and highly electron-dense nucleus (with short basal fossa containing centriolar complex and initial portion of a 9xa0+xa02 axoneme); (3) an elongate midpiece consisting of the axoneme sheathed by 5–6 helical mitochondrial elements, each exhibiting a dense U-shaped outer layer; (4) an elongate glycogen piece (axoneme sheathed by nine tracts of putative glycogen granules); (5) a dense annulus at the junction of the midpiece and glycogen piece and (6) a short free tail region (axoneme surrounded only by plasma membrane). Paraspermatozoa of Z. dufresnei are vermiform and dimorphic: the first type contains approximately 14–20 axonemes (arranged peripherally and interspersed with microtubules) and numerous oblong dense vesicles, numerous less dense (round) vesicles, occasional, large lipid-like vesicles, and scattered mitochondria; the second type contains 25–31 axonemes (peripherally arranged, interspersed with microtubules), occasional mitochondria and extensive cytoplasm. Results obtained for P. mirabilis from testis material are essentially as observed in Z. dufresnei, although the euspermatozoan acrosome still has to achieve its compressed transverse profile. Observations on paraspermatozoa were limited by fixation quality of available (testis) tissues, but these cells are similar to the first type of Zidona paraspermatozoa. Although most of the euspermatozoal features are also observed in many neotaenioglossans and neogastropods, the U-shaped outer layer of each mitochondrial element has not previously been reported and may prove a diagnostic feature of the Volutidae, the subfamily Zidoniinae or possibly only the Zidonini (in which Z. dufresnei and P. mirabilis are currently placed).
Ecotoxicology and Environmental Safety | 2016
Fernando J. Meijide; Graciela Rey Vázquez; Yanina G. Piazza; Paola A. Babay; Raúl F. Itria; Fabiana L. Lo Nostro
Estrogenic chemicals are often detected in the aquatic environment and can negatively affect animal development and reproduction. In teleost fishes, the hormonal regulation during a critical period of larval development has a strong influence on gonadal sex differentiation; thus this process may be affected by the exposure to environmental estrogens. In this study, we first assessed the lethal acute toxicity of the natural estrogen 17β-estradiol (E2) and the weaker estrogen mimics 4-tert-octylphenol (OP) and 4-nonylphenol (NP) on larval stages of the South American cichlid fish Cichlasoma dimerus. In a further experiment, we analyzed the effects of chronic waterborne exposure to E2 and OP on gonad development and sex differentiation. Exposure to high concentrations of E2 had a pronounced feminizing effect directing sex differentiation towards ovarian development, while testis development was inhibited at a lower, environmentally relevant concentration. Among OP-exposed fish, 15-38.5% of the males exhibited testicular oocytes (TOs), a commonly reported biomarker of estrogenic exposure. However, since TOs were also recorded in control males and the proportion of males with TOs was not significantly higher in OP treatments, their occurrence could not be attributed to OP exposure. In addition, TOs did not seem to impair male gonad development and functionality since normal spermatogenesis was observed in testes of OP-treated fish. These results indicate that E2 occurring in the South American aquatic environment may affect male reproductive development and pose a risk for wild C. dimerus, especially under prolonged exposure, while the effects of weaker xenoestrogens such as OP would be negligible for gonad development in this species. As illustrated by this study, the natural occurrence of TOs indicates that conclusions concerning the causes of this phenomenon must be drawn with care.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2016
Rodrigo H. Da Cuña; Graciela Rey Vázquez; Luciana Dorelle; Enrique M. Rodríguez; Renata Guimarães Moreira; Fabiana L. Lo Nostro
The organochlorine pesticide endosulfan (ES) is used in several countries as a wide spectrum insecticide on crops with high commercial value. Due to its high toxicity to non-target animals, its persistence in the environment and its ability to act as an endocrine disrupting compound in fish, ES use is currently banned or restricted in many other countries. Previous studies on the cichlid fish Cichlasoma dimerus have shown that waterborne exposure to ES can lead to both decreased pituitary FSH content and histological alterations of testes. As gonadotropin-stimulated sex steroids release from gonads was inhibited by ES in vitro, the aim of the present study was to elucidate possible mechanisms of disruption of ES on gonadal steroidogenesis in C. dimerus, as well as compare the action of the active ingredient (AI) with that of currently used commercial formulations (CF). Testis and ovary fragments were incubated with ES (AI or CF) and/or steroidogenesis activators or precursors. Testosterone and estradiol levels were measured in the incubation media. By itself, ES did not affect hormone levels. Co-incubation with LH and the adenylate cyclase activator forskolin caused a decrease of the stimulated sex steroids release. When co-incubated with precursors dehydroandrostenedione and 17αhydroxyprogesterone, ES did not affect the increase caused by their addition alone. No differences were observed between the AI and CFs, suggesting that the effect on steroidogenesis disruption is mainly caused by the AI. Results indicate that action of ES takes place downstream of LH-receptor activation and upstream of the studied steroidogenic enzymes.
Archives of Environmental Contamination and Toxicology | 2013
Andrea Cecilia Hued; Fabiana L. Lo Nostro; Daniel A. Wunderlin; María de los Ángeles Bistoni
The potential threat to animal reproduction by contaminated freshwater systems posed the necessity to identify and develop bioindicators and biomarkers to be used for screening and evaluation of the effects in organisms. The main goal of this work was to determine, through histological analyses and changes in gonopodium morphology, whether a freshwater system polluted by anthropogenic activities—sewage, agricultural, and industrial—could cause alterations at the organ level. We also propose the live-bearing fish, Jenynsia multidentata, as a species suitable to study the effects of contaminated aquatic environments. We compared male fish sampled at two different stations in Suquía River basin (Córdoba, Argentina), both differing in degree of pollution, through liver and testis histology and gonopodial morphometric parameters. The water quality, based on the physicochemical characteristics of the studied stations, varied markedly with a decrease in water quality at the downstream site (station 2). At the highest polluted area, detrimental effects on liver and testis were evidenced on histological analysis. Male individuals from station 2 also presented noticeable structural changes of the anal fin, such as a straight gonopodium and abnormal tip area. The present results demonstrate that a freshwater system polluted by the impacts of anthropogenic activities has detrimental effects to J. multidentata. The alterations registered in individuals from the polluted station indicate an impairment of male reproductive performance and imply a risk for other live-bearing species as well as the entire biodiversity. We consider J. multidentata a sentinel species that is useful to evaluate the potential risk present in the studied basin not only to itself but to other species as well.
Neotropical Ichthyology | 2016
Renato M. Honji; Danilo Caneppele; Matías Pandolfi; Fabiana L. Lo Nostro; Renata Guimarães Moreira
Poco se sabe sobre la biologia reproductiva de Steindachneridion parahybae , una especie de teleosteo gonocoristico en peligro de extincion que habita la cuenca del rio Paraiba do Sul y en este trabajo se describe por primera vez la aparicion de individuo intersexo en juvenil de S. parahybae . Tambien se describio el aspecto normal de los ovarios y de los testiculos de individuos juveniles procedentes del mismo lote de cria para su comparacion; se realizo ademas el analisis citogenetico. Un especimen fue clasificado a priori como hembra debido a las caracteristicas macroscopicas de los ovarios, con pequenos oocitos amarillos, sin flecos (caracteristica principal de los bagres macho) y mas grande que los testiculos; sin embargo el analisis microscopico revelo la presencia de un ovotestis, incluyendo una espermatogenesis completa. S. parahybae presento un numero diploide, 2n = 56 cromosomas, sin evidencia de cromosomas sexuales diferenciados o supernumerarios entre ellos. Estos hallazgos pueden deberse al resultado de la exposicion de los individuos a desorganizadores endocrinos o estar influenciados por las condiciones ambientales. Sin embargo no se puede descartar la posibilidad de la presencia de intersexos de forma espontanea. Por lo tanto, la importancia funcional y las consecuencias reproductivas de estas anomalias permanecen aun sin ser determinadas, sugiriendo que esta especie puede ser susceptible a los disruptores endocrinos. Estos resultados contribuyen a ampliar el conocimiento de la biologia reproductiva de esta especie en peligro de extincion en condiciones de cautiverio.
General and Comparative Endocrinology | 2017
Mariana Frias de Campos; Fabiana L. Lo Nostro; Rodrigo H. Da Cuña; Renata Guimarães Moreira
The dusky grouper Epinephelus marginatus is a protogynous hermaphrodite fish, that maintains high levels of plasma steroids as juveniles, as substrates for sex inversion. These fish are exposed to marine pollution from oil spills during cargo handling. Polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (Phe), are the main crude oil components and are toxic to fish, acting as endocrine disruptors (ED). This is the first study that investigated impacts of Phe as an ED in E. marginatus juveniles. An in vivo sublethal exposure (96h) to Phe was carried out at two concentrations (0.1mg/L and 1mg/L); exposure to the vehicle (ethanol; ETOH) was also performed. Plasma levels of 17β-estradiol (E2), testosterone (T) and 11-ketotestosterone (11-KT) were measured by ELISA. Gonads, liver and spleen were processed for histological analysis. In an in vitro bioassay, gonad fragments were incubated with Phe (8.91mg/L) or ETOH. Steroid levels in the culture media were measured by ELISA. The in vivo exposure to Phe triggered an increase of the area of the hepatocytes, increased number of melanomacrophagic centers and hemosiderosis in the spleen; ETOH induced similar effects on spleen. E2 and T levels did not change in plasma or in vitro media. In plasma, ETOH decreased 11-KT levels. Phenanthrene sharply reduced 11-KT levels in vitro. Although in vivo bioassay results were not unequivocal owing to ethanol effects, Phe might disrupt steroidogenesis in juvenile grouper, possibly causing dysfunctions during sex change and gonadal maturity, considering the importance of 11-KT in developing ovaries.
Acta Zoologica | 2007
Laura S. López Greco; Fabiana L. Lo Nostro