Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabiana Santana Celes is active.

Publication


Featured researches published by Fabiana Santana Celes.


Carbohydrate Polymers | 2015

Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration

H.G. Oliveira Barud; Hernane S. Barud; Maurício Cavicchioli; Thais Silva do Amaral; Osmir Batista de Oliveira Júnior; Diego M. Santos; Antonio Luis de Oliveira Almeida Petersen; Fabiana Santana Celes; Valéria M. Borges; Camila I. de Oliveira; Pollyanna Francielli de Oliveira; Ricardo Andrade Furtado; Denise Crispim Tavares; Sidney José Lima Ribeiro

Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.


Colloids and Surfaces B: Biointerfaces | 2016

Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro

Ana Paula Perez; Maria Julia Altube; Priscila Schilrreff; Gustavo Apezteguia; Fabiana Santana Celes; Susana Zacchino; Eder Lilia Romero; Maria Jose Morilla

Aiming to improve the topical delivery of AmB to treat cutaneous fungal infections and leishmaniasis, ultradeformable liposomes containing amphotericin B (AmB-UDL) were prepared, and structural and functional characterized. The effect of different edge activators, phospholipid and AmB concentration, and phospholipid to edge activator ratio on liposomal deformability, as well as on AmB liposomal content, was tested. Liposomes having Tween 80 as edge activator resulted of maximal deformability and AmB/phospholipid ratio. These consisted of AmB-UDL of 107±8nm diameter, 0.078-polydispersity index and -3±0.2mV Z potential, exhibiting monomeric AmB encapsulated in the bilayer at a 75% encapsulation efficiency. After its cytotoxicity on keratinocytes (HaCaT cells) and macrophages (J774 cells) was determined, the in vitro antifungal activity of AmB-UDL was assayed. It was found that fungal strains (albicans and non-albicans Candida ATCC strains and clinical isolates of C. albicans) were more sensitive to AmB-UDL than mammal cells. Minimum inhibitory concentration values for AmB-UDL were 5-24 and 24-50 times lower than IC50 for J774 and HaCaT cells, respectively. AmB-UDL at 1.25μg/ml also displayed 100 and 75% anti- Leishmania braziliensis promastigote and amastigote activity, respectively. Finally, upon 1h of non-occlusive incubation, the total accumulation of AmB in human skin was 40 times higher when applied as AmB-UDL than as AmBisome. AmB-UDL provided a profound AmB penetration toward deep epithelial layers, achieved without classical permeation enhancers. Because of that, topical treatments of cutaneous fungal infection and leishmaniasis with AmB-UDL may be regarded of potential of clinical significance.


PLOS Neglected Tropical Diseases | 2015

Exposure to Leishmania braziliensis Triggers Neutrophil Activation and Apoptosis

Sarah C. Falcão; Tiffany Weinkopff; Benjamin P. Hurrell; Fabiana Santana Celes; Rebecca P. Curvelo; Deboraci Brito Prates; Aldina Barral; Valéria M. Borges; Fabienne Tacchini-Cottier; Camila I. de Oliveira

Background Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. Methods and Findings Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. Conclusions We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.


PLOS Neglected Tropical Diseases | 2014

Chemotherapeutic Potential of 17-AAG against Cutaneous Leishmaniasis Caused by Leishmania (Viannia) braziliensis

Diego M. Santos; Antonio Luis de Oliveira Almeida Petersen; Fabiana Santana Celes; Valéria M. Borges; Patrícia Sampaio Tavares Veras; Camila I. de Oliveira

Background Leishmaniasis remains a worldwide public health problem. The limited therapeutic options, drug toxicity and reports of resistance, reinforce the need for the development of new treatment options. Previously, we showed that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a Heat Shock Protein 90 (HSP90)-specific inhibitor, reduces L. (L.) amazonensis infection in vitro. Herein, we expand the current knowledge on the leishmanicidal activity of 17-AAG against cutaneous leishmaniasis, employing an experimental model of infection with L. (V.) braziliensis. Methodology/Principal findings Exposure of axenic L. (V.) braziliensis promastigotes to 17-AAG resulted in direct dose-dependent parasite killing. These results were extended to L. (V.) braziliensis-infected macrophages, an effect that was dissociated from the production of nitric oxide (NO), superoxide (O−2) or inflammatory mediators such as TNF-α, IL-6 and MCP-1. The leishmanicidal effect was then demonstrated in vivo, employing BALB/c mice infected with L. braziliensis. In this model, 17-AAG treatment resulted in smaller skin lesions and parasite counts were also significantly reduced. Lastly, 17-AAG showed a similar effect to amphotericin B regarding the ability to reduce parasite viability. Conclusion/Significance 17-AAG effectively inhibited the growth of L. braziliensis, both in vitro and in vivo. Given the chronicity of L. (V.) braziliensis infection and its association with mucocutaneous leishmaniasis, 17-AAG can be envisaged as a new chemotherapeutic alternative for cutaneous Leishmaniasis.


Frontiers in Immunology | 2017

Heme Drives Oxidative Stress-Associated Cell Death in Human Neutrophils Infected with Leishmania infantum

Graziele Q. Carvalho; Nívea F. Luz; Fabiana Santana Celes; Dalila L. Zanette; Daniela Andrade; Diego Silva Menezes; Natalia Tavares; Cláudia Brodskyn; Deboraci Brito Prates; Marilda de Souza Gonçalves; Roque P. Almeida; Marcelo T. Bozza; Bruno B. Andrade; Valéria M. Borges

Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.


Scientific Reports | 2016

DETC-based bacterial cellulose bio-curatives for topical treatment of cutaneous leishmaniasis

Fabiana Santana Celes; Eliane Trovatti; Ricardo Khouri; Johan Van Weyenbergh; Sidney José Lima Ribeiro; Valéria M. Borges; Hernane S. Barud; Camila I. de Oliveira

The treatment of leishmaniasis still relies on drugs with potentially serious adverse effects. Herein, we tested a topical formulation of bacterial cellulose (BC) membranes containing Diethyldithiocarbamate (DETC), a superoxide dismutase 1 inhibitor. Leishmania-infected macrophages exposed to BC-DETC resulted in parasite killing, without pronounced toxic effects to host cells. This outcome was associated with lower SOD1 activity and higher production of superoxide and cytokine mediators. Topical application of BC-DETC significantly decreased lesion size, parasite load and the inflammatory response at the infection site, as well as the production of both IFN-γ and TNF. Combination of topical BC-DETC plus intraperitoneal Sbv also significantly reduced disease development and parasite load. The leishmanicidal effect of BC-DETC was extended to human macrophages infected with L. braziliensis, highlighting the feasibility of BC-DETC as a topical formulation for chemotherapy of cutaneous leishmaniasis caused by L. braziliensis.


Evidence-based Complementary and Alternative Medicine | 2017

Parasite Killing of Leishmania (V) braziliensis by Standardized Propolis Extracts

Jéssica Rebouças-Silva; Fabiana Santana Celes; Jonilson B. Lima; Hernane S. Barud; Camila I. de Oliveira; Andresa Aparecida Berretta; Valéria M. Borges

Treatments based on antimonials to cutaneous leishmaniasis (CL) entail a range of toxic side effects. Propolis, a natural compound widely used in traditional medical applications, exhibits a range of biological effects, including activity against infectious agents. The aim of this study was to test the potential leishmanicidal effects of different propolis extracts against Leishmania (Viannia) braziliensis promastigotes and intracellular amastigotes in vitro. Stationary-phase L. (V) braziliensis promastigotes were incubated with medium alone or treated with dry, alcoholic, or glycolic propolis extract (10, 50, or 100 μg/mL) for 96 h. Our data showed that all extracts exhibited a dose-dependent effect on the viability of L. (V) braziliensis promastigotes, while controlling the parasite burden inside infected macrophages. Dry propolis extract significantly modified the inflammatory profile of murine macrophages by downmodulating TGF-β and IL-10 production, while upmodulating TNF-α. All three types of propolis extract were found to reduce nitric oxide and superoxide levels in activated L. braziliensis-infected macrophages. Altogether, our results showed that propolis extracts exhibited a leishmanicidal effect against both stages of L. (V) braziliensis. The low cell toxicity and efficient microbicidal effect of alcoholic or glycolic propolis extracts make them candidates to an additive treatment for cutaneous leishmaniasis.


BMC Infectious Diseases | 2014

Serological survey of Leishmania infection in blood donors in Salvador, Northeastern Brazil

Kiyoshi F. Fukutani; Virgínia Figueiredo; Fabiana Santana Celes; Juqueline R. Cristal; Aldina Barral; Manoel Barral-Netto; Camila I. de Oliveira


Einstein (São Paulo) | 2012

Evaluation of the implementation of a quality system in a basic research laboratory: viability and impacts

Hilda Carolina de Jesus Rios Fraga; Kiyoshi F. Fukutani; Fabiana Santana Celes; Aldina Barral


Archive | 2016

Nanocompósitos de biocelulose e seu uso

Sidney José Lima Ribeiro; Hernane S. Barud; Fabiana Santana Celes; Valéria M. Borges

Collaboration


Dive into the Fabiana Santana Celes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldina Barral

Federal University of Bahia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge