Fabien Le Chevalier
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabien Le Chevalier.
Molecular Microbiology | 2002
Philippe Glaser; Christophe Rusniok; Carmen Buchrieser; Fabien Le Chevalier; Lionel Frangeul; Tarek Msadek; Mohamed Zouine; Elisabeth Couvé; Lila Lalioui; Claire Poyart; Patrick Trieu-Cuot; Frank Kunst
Streptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty‐five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes , 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.
Journal of Bacteriology | 2001
Sylvie Chauvaux; Fabien Le Chevalier; Corinne Le Dantec; Françoise Fayolle; Isabelle Miras; Frank Kunst; Pierre Béguin
Rhodococcus ruber (formerly Gordonia terrae) IFP 2001 is one of a few bacterial strains able to degrade ethyl tert-butyl ether (ETBE), which is a major pollutant from gasoline. This strain was found to undergo a spontaneous 14.3-kbp chromosomal deletion, which results in the loss of the ability to degrade ETBE. Sequence analysis of the region corresponding to the deletion revealed the presence of a gene cluster, ethABCD, encoding a ferredoxin reductase, a cytochrome P-450, a ferredoxin, and a 10-kDa protein of unknown function, respectively. The EthB and EthD proteins could be easily detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were induced by ETBE in the wild-type strain. Upstream of ethABCD lies ethR, which codes for a putative positive transcriptional regulator of the AraC/XylS family. Transformation of the ETBE-negative mutant by a plasmid carrying the ethRABCD genes restored the ability to degrade ETBE. Complementation was abolished if the plasmid carried ethRABC only. The eth genes are located in a DNA fragment flanked by two identical direct repeats of 5.6 kbp. The ETBE-negative mutants carry a single copy of this 5.6-kbp repeat, suggesting that the 14.3-kbp chromosomal deletion resulted from a recombination between the two identical sequences. The 5.6-kbp repeat is a class II transposon carrying a TnpA transposase, a truncated form of the recombinase TnpR, and a terminal inverted repeat of 38 bp. The truncated TnpR is encoded by an IS3-interrupted tnpR gene.
Molecular Microbiology | 2013
Alexandre Pawlik; Guillaume Garnier; Mickael Orgeur; Pin Tong; Amanda J. Lohan; Fabien Le Chevalier; Guillaume Sapriel; Anne-Laure Roux; Kevin C. Conlon; Nadine Honoré; Marie-Agnès Dillies; Laurence Ma; Christiane Bouchier; Jean-Yves Coppée; Jean-Louis Gaillard; Stephen V. Gordon; Brendan J. Loftus; Roland Brosch; Jean Louis Herrmann
Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic‐resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non‐pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non‐ribosomal peptide synthase gene cluster mps1‐mps2‐gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco‐Peptido‐Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL‐production or transport makes a frequent switching back‐and‐forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.
Nature microbiology | 2016
Eva C. Boritsch; Wafa Frigui; Alessandro Cascioferro; Wladimir Malaga; Gilles Etienne; Françoise Laval; Alexandre Pawlik; Fabien Le Chevalier; Mickael Orgeur; Laurence Ma; Christiane Bouchier; Timothy P. Stinear; Philip Supply; Laleh Majlessi; Mamadou Daffé; Christophe Guilhot; Roland Brosch
Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host–pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.
PLOS Neglected Tropical Diseases | 2011
Fred Stephen Sarfo; Fabien Le Chevalier; Nguetta Aka; Richard Phillips; Yaw Ampem Amoako; Ivo G. Boneca; Pascal Lenormand; Mireille Dosso; Mark Wansbrough-Jones; Romain Veyron-Churlet; Laure Guenin-Macé; Caroline Demangel
Background Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU), is unique among human pathogens in its capacity to produce a polyketide-derived macrolide called mycolactone, making this molecule an attractive candidate target for diagnosis and disease monitoring. Whether mycolactone diffuses from ulcerated lesions in clinically accessible samples and is modulated by antibiotic therapy remained to be established. Methodology/Principal Finding Peripheral blood and ulcer exudates were sampled from patients at various stages of antibiotic therapy in Ghana and Ivory Coast. Total lipids were extracted from serum, white cell pellets and ulcer exudates with organic solvents. The presence of mycolactone in these extracts was then analyzed by a recently published, field-friendly method using thin layer chromatography and fluorescence detection. This approach did not allow us to detect mycolactone accurately, because of a high background due to co-extracted human lipids. We thus used a previously established approach based on high performance liquid chromatography coupled to mass spectrometry. By this means, we could identify structurally intact mycolactone in ulcer exudates and serum of patients, and evaluate the impact of antibiotic treatment on the concentration of mycolactone. Conclusions/Significance Our study provides the proof of concept that assays based on mycolactone detection in serum and ulcer exudates can form the basis of BU diagnostic tests. However, the identification of mycolactone required a technology that is not compatible with field conditions and point-of-care assays for mycolactone detection remain to be worked out. Notably, we found mycolactone in ulcer exudates harvested at the end of antibiotic therapy, suggesting that the toxin is eliminated by BU patients at a slow rate. Our results also indicated that mycolactone titres in the serum may reflect a positive response to antibiotics, a possibility that it will be interesting to examine further through longitudinal studies.
Cellular Microbiology | 2017
Jacques Augenstreich; Ainhoa Arbués; Roxane Simeone; Evert Haanappel; Alice Wegener; Fadel Sayes; Fabien Le Chevalier; Christian Chalut; Wladimir Malaga; Christophe Guilhot; Roland Brosch; Catherine Astarie-Dequeker
Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT‐6). This small protein, which is secreted by the type VII secretion system ESX‐1 (T7SS/ESX‐1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock‐out or knock‐in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX‐1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.
Science Translational Medicine | 2015
Laure Guenin-Macé; Ludivine Baron; Anne-Caroline Chany; Cédric Tresse; Sarah Saint-Auret; Friederike Jönsson; Fabien Le Chevalier; Pierre Bruhns; Georges Bismuth; Sophie Hidalgo-Lucas; Jean-François Bisson; Nicolas Blanchard; Caroline Demangel
A synthetic mycobacterial macrolide mycolactone decreases skin inflammation and inflammatory pain. Modifying microbial immunosuppressants Microbes have evolved an arsenal of methods to avoid host response, including decreasing inflammation. Now, Guenin-Macé et al. repurpose a compound with ulcerative, analgesic, and anti-inflammatory effects produced by Mycobacterium ulcerans—mycolactone—as an anti-inflammatory drug. They found a synthetic subunit of mycolactone that retained its immunosuppressive and analgesic activities but was less toxic in terms of ulcerative activity. This subunit suppressed chronic skin inflammation and inflammatory pain in an animal model with minimal side effects, and could serve as a new anti-inflammatory agent if these results hold true in humans. Inflammation adversely affects the health of millions of people worldwide, and there is an unmet medical need for better anti-inflammatory drugs. We evaluated the therapeutic interest of mycolactone, a polyketide-derived macrolide produced by Mycobacterium ulcerans. Bacterial production of mycolactone in human skin causes a combination of ulcerative, analgesic, and anti-inflammatory effects. Whereas ulcer formation is mediated by the proapoptotic activity of mycolactone on skin cells via hyperactivation of Wiskott-Aldrich syndrome proteins, analgesia results from neuronal hyperpolarization via signaling through angiotensin II type 2 receptors. Mycolactone also blunts the capacity of immune cells to produce inflammatory mediators by an independent mechanism of protein synthesis blockade. In an attempt to isolate the structural determinants of mycolactone’s immunosuppressive activity, we screened a library of synthetic subunits of mycolactone for inhibition of cytokine production by activated T cells. The minimal structure retaining immunosuppressive activity was a truncated version of mycolactone, missing one of the two core-branched polyketide chains. This compound inhibited the inflammatory cytokine responses of human primary cells at noncytotoxic doses and bound to angiotensin II type 2 receptors comparably to mycolactone in vitro. Notably, it was considerably less toxic than mycolactone in human primary dermal fibroblasts modeling ulcerative activity. In mouse models of human diseases, it conferred systemic protection against chronic skin inflammation and inflammatory pain, with no apparent side effects. In addition to establishing the anti-inflammatory potency of mycolactone in vivo, our study therefore highlights the translational potential of mycolactone core-derived structures as prospective immunosuppressants.
Future Microbiology | 2014
Fabien Le Chevalier; Alessandro Cascioferro; Laleh Majlessi; Jean Louis Herrmann; Roland Brosch
Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions.
PLOS Pathogens | 2017
Barbara Rieck; Giulia Degiacomi; Michael B. Zimmermann; Alessandro Cascioferro; Francesca Boldrin; Natalie R. Lazar-Adler; Andrew R. Bottrill; Fabien Le Chevalier; Wafa Frigui; Marco Bellinzoni; María-Natalia Lisa; Pedro M. Alzari; Liem Nguyen; Roland Brosch; Uwe Sauer; Riccardo Manganelli; Helen M. O’Hare
Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.
Scientific Reports | 2015
Fabien Le Chevalier; Alessandro Cascioferro; Wafa Frigui; Alexandre Pawlik; Eva C. Boritsch; Daria Bottai; Laleh Majlessi; Jean Louis Herrmann; Roland Brosch
Mycobacterium tuberculosis, the agent of human tuberculosis has developed different virulence mechanisms and virulence-associated tools during its evolution to survive and multiply inside the host. Based on previous reports and by analogy with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought to be among these tools. To get deeper insights into the function of PLCs, we investigated their putative involvement in the intracellular lifestyle of M. tuberculosis, with emphasis on phagosomal rupture and virulence, thereby re-visiting a research theme of longstanding interest. Through the construction and use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and control strains, we found that PLCs of M. tuberculosis were not required for induction of phagosomal rupture and only showed marginal, if any, impact on virulence of M. tuberculosis in the cellular and mouse infection models used in this study. In contrast, we found that PLC-encoding genes were strongly upregulated under phosphate starvation and that PLC-proficient M. tuberculosis strains survived better than ΔPLC mutants under conditions where phosphatidylcholine served as sole phosphate source, opening new perspectives for studies on the role of PLCs in the lifecycle of M. tuberculosis.