Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabien Leprieur is active.

Publication


Featured researches published by Fabien Leprieur.


Ecology Letters | 2011

Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes

Fabien Leprieur; Pablo A. Tedesco; Bernard Hugueny; Olivier Beauchard; Hans H. Dürr; Sébastien Brosse; Thierry Oberdorff

Here, we employ an additive partitioning framework to disentangle the contribution of spatial turnover and nestedness to beta diversity patterns in the global freshwater fish fauna. We find that spatial turnover and nestedness differ geographically in their contribution to freshwater fish beta diversity, a pattern that results from contrasting influences of Quaternary climate changes. Differences in fish faunas characterized by nestedness are greater in drainage basins that experienced larger amplitudes of Quaternary climate oscillations. Conversely, higher levels of spatial turnover are found in historically unglaciated drainage basins with high topographic relief, these having experienced greater Quaternary climate stability. Such an historical climate signature is not clearly detected when considering the overall level of beta diversity. Quantifying the relative roles of historical and ecological factors in explaining present-day patterns of beta diversity hence requires considering the different processes generating these patterns and not solely the overall level of beta diversity.


Science | 2014

Quaternary coral reef refugia preserved fish diversity

Loïc Pellissier; Fabien Leprieur; Valeriano Parravicini; Peter F. Cowman; Michel Kulbicki; Glenn Litsios; Steffen M. Olsen; Mary S. Wisz; David R. Bellwood; David Mouillot

Ancient reefs provided fishy refuges Climate fluctuations have occurred repeatedly in Earths history, and so there is much to be learned from examining the responses of past systems. Pellessier et al. reconstructed paleoenvironments over the past 3 million years from sediment cores collected across coral reef systems to explore the impacts of past conditions on reef fish diversity. Coral reefs survived in the Indo-Australian regions during times of otherwise extensive habitat loss. These robust reefs can explain much of the diversity found in present-day reef fish species. Science, this issue p. 1016 Ancient reefs protected fish from past climate changes, contributing to highly diverse fish in Indo-Australian reefs today. The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity.


PLOS ONE | 2012

Quantifying Phylogenetic Beta Diversity: Distinguishing between ‘True’ Turnover of Lineages and Phylogenetic Diversity Gradients

Fabien Leprieur; Camille Albouy; Julien De Bortoli; Peter F. Cowman; David R. Bellwood; David Mouillot

The evolutionary dissimilarity between communities (phylogenetic beta diversity PBD) has been increasingly explored by ecologists and biogeographers to assess the relative roles of ecological and evolutionary processes in structuring natural communities. Among PBD measures, the PhyloSor and UniFrac indices have been widely used to assess the level of turnover of lineages over geographical and environmental gradients. However, these indices can be considered as ‘broad-sense’ measures of phylogenetic turnover as they incorporate different aspects of differences in evolutionary history between communities that may be attributable to phylogenetic diversity gradients. In the present study, we extend an additive partitioning framework proposed for compositional beta diversity to PBD. Specifically, we decomposed the PhyloSor and UniFrac indices into two separate components accounting for ‘true’ phylogenetic turnover and phylogenetic diversity gradients, respectively. We illustrated the relevance of this framework using simple theoretical and archetypal examples, as well as an empirical study based on coral reef fish communities. Overall, our results suggest that using PhyloSor and UniFrac may greatly over-estimate the level of spatial turnover of lineages if the two compared communities show contrasting levels of phylogenetic diversity. We therefore recommend that future studies use the ‘true’ phylogenetic turnover component of these indices when the studied communities encompass a large phylogenetic diversity gradient.


Methods in Ecology and Evolution | 2015

Comparing methods to separate components of beta diversity

Andrés Baselga; Fabien Leprieur

Summary Two alternative frameworks have been proposed to partition compositional dissimilarity into replacement and nestedness-resultant component or into replacement and richness-difference components. These are, respectively, the BAS (Baselga 2010, Global Ecology and Biogeography, 19, 134–143) and POD (Podani & Schmera 2011. Oikos, 120, 1625–1638) frameworks. We conduct a systematic comparison of parallel components in alternative approaches. We test whether the replacement components derived from the BAS and POD frameworks are independent of richness difference. We also evaluate whether previously reported tests of monotonicity between indices and ecological processes are informative to assess the performance of indices. Finally, we illustrate the consequences of differences between the BAS and POD frameworks using the North American freshwater fish fauna as an empirical example. In the BAS framework, the nestedness-resultant component (βjne or βsne) accounts only for richness differences derived from nested patterns while, in the POD framework, richness-difference dissimilarity (βrich or βrich.s) accounts for all kind of richness differences. Likewise, the replacement components of both alternative methods account for different concepts. Only the replacement component of the BAS framework (βjtu or βsim) is independent of richness difference, while the parallel component in the POD framework (β−3 or β−3.s) is not (i.e. it is mathematically constrained by richness difference). Therefore, only the BAS framework allows separating (i) the variation in species composition derived from species replacement which is independent of richness difference (i.e. not mathematically constrained by it) and (ii) the variation in species composition derived from nested patterns.


Ecology Letters | 2010

Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann’s rule

Simon Blanchet; Gaël Grenouillet; Olivier Beauchard; Pablo A. Tedesco; Fabien Leprieur; Hans H. Dürr; Frédéric Busson; Thierry Oberdorff; Sébastien Brosse

In this study, we test whether established non-native species induce functional changes in natural assemblages. We combined data on the body size of freshwater fish species and a worldwide data set of native and non-native fish species for 1058 river basins. We show that non-native fish species are significantly larger than their native counterparts and are a non-random subset of the worldwide set of fish species. We further show that the median body size of fish assemblages increases in the course of introductions. These changes are the opposite of those expected under several null models. Introductions shift body size patterns related to several abiotic factors (e.g. glacier coverage and temperature) in a way that modifies latitudinal patterns (i.e. Bergmanns rule), especially in the southern hemisphere. Together, these results show that over just the last two centuries human beings have induced changes in the global biogeography of freshwater fish body size, which could affect ecosystem properties.


International Journal of Ecology | 2011

Global and regional patterns in riverine fish species richness : a review

Thierry Oberdorff; Pablo A. Tedesco; Bernard Hugueny; Fabien Leprieur; Olivier Beauchard; Sébastien Brosse; Hans H. Dürr

We integrate the respective role of global and regional factors driving riverine fish species richness patterns, to develop a synthetic model of potential mechanisms and processes generating these patterns. This framework allows species richness to be broken down into different components specific to each spatial extent and to establish links between these components and the processes involved. This framework should help to answer the questions that are currently being asked by society, including the effects of species invasions, habitat loss, or fragmentation and climate change on freshwater biodiversity.


Ecology Letters | 2014

Global imprint of historical connectivity on freshwater fish biodiversity

Murilo S. Dias; Thierry Oberdorff; Bernard Hugueny; Fabien Leprieur; Céline Jézéquel; Jean-François Cornu; Sébastien Brosse; Gaël Grenouillet; Pablo A. Tedesco

The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Broad-scale determinants of non-native fish species richness are context-dependent

Simon Blanchet; Fabien Leprieur; Olivier Beauchard; Jan Staes; Thierry Oberdorff; Sébastien Brosse

Identifying the factors determining the non-native species richness (NNSR) in a given area is essential for preventing species invasions. The relative importance of human-related and natural factors considered for explaining NNSR might depend upon both the spatial scale (i.e. the extent of the gradients sampled) and the historical context of the area surveyed. Here, using a worldwide database of freshwater fish occurrences, we tested whether the relative influence of human and ecological determinants of non-native fish species establishment at the scale of the biogeographic realm was consistent (i) with that observed worldwide, and (ii) among the different biogeographical realms. The prominent role of human activity in shaping the global (i.e. worldwide) pattern of NNSR cannot be directly extrapolated to the biogeographic realms. Furthermore, the relationships between human and ecological determinants and NNSR vary strikingly across biogeographic realms, revealing a strong context dependency of the determinants of NNSR. In particular, the human-related factors play a predominant role in explaining the establishment of non-native species in economically developed realms, while in the other realms environmental characteristics of the river basins best explained geographical patterns of NNSR. In the face of future biological invasions, considering both the spatial scale and the historical context of the surveyed area is crucial to adopt effective conservation strategies.


Hydrobiologia | 2013

Fish-SPRICH: a database of freshwater fish species richness throughout the World

Sébastien Brosse; Olivier Beauchard; Simon Blanchet; Hans H. Dürr; Gaël Grenouillet; Bernard Hugueny; Christine Lauzeral; Fabien Leprieur; Pablo A. Tedesco; Sébastien Villéger; Thierry Oberdorff

There is growing interest in large-scale approaches to ecology, for both plants and animals. In particular, macroecological studies enable examination of the patterns and determinants of species richness of a variety of groups of organism throughout the world, which might have important implications for prediction and mitigation of the consequences of global change. Here, we provide richness data for freshwater fishes, which, with more than 13,000 described species, comprise a quarter of all vertebrate species. We conducted an extensive literature survey of native, non-native (exotic), and endemic freshwater fish species richness. The resulting database, called Fish-SPRICH, contains data from more than 400 bibliographic sources including published papers, books, and grey literature sources. Fish-SPRICH contains richness values at the river basin grain for 1,054 river basins covering more than 80% of the earth’s continental surface. This database is currently the most comprehensive global database of native, non-native and endemic freshwater fish richness available at the river basin grain.


Hydrobiologia | 2013

A global assessment of freshwater fish introductions in mediterranean-climate regions

Sm Marr; Julian D. Olden; Fabien Leprieur; Ivan Arismendi; Marko Ćaleta; D.L. Morgan; Annamaria Nocita; Radek Šanda; A. Serhan Tarkan; Emili García-Berthou

Mediterranean-climate regions (med-regions) are global hotspots of endemism facing mounting environmental threats associated with human-related activities, including the ecological impacts associated with non-native species introductions. We review freshwater fish introductions across med-regions to evaluate the influences of non-native fishes on the biogeography of taxonomic and functional diversity. Our synthesis revealed that 136 freshwater fish species (26 families, 13 orders) have been introduced into med-regions globally. These introductions, and local extirpations, have increased taxonomic and functional faunal similarity among regions by an average of 7.5% (4.6–11.4%; Jaccard) and 7.2% (1.4–14.0%; Bray–Curtis), respectively. Faunal homogenisation was highest in Chile and the western Med Basin, whereas sw Cape and the Aegean Sea drainages showed slight differentiation (decrease in faunal similarity) over time. At present, fish faunas of different med-regions have widespread species in common (e.g. Gambusia holbrooki, Cyprinus carpio, Oncorhynchus mykiss, Carassius auratus, and Micropterus salmoides) which are typically large-bodied, non-migratory, have higher physiological tolerance, and display fast population growth rates. Our findings suggest that intentional and accidental introductions of freshwater fish have dissolved dispersal barriers and significantly changed the present-day biogeography of med-regions across the globe. Conservation challenges in med-regions include understanding the ecosystem consequences of non-native species introductions at macro-ecological scales.

Collaboration


Dive into the Fabien Leprieur's collaboration.

Top Co-Authors

Avatar

David Mouillot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Hugueny

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge