Fabien Trousselet
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabien Trousselet.
Physical Review B | 2012
Fabien Trousselet; Andrzej M. Oleś; Peter Horsch
We study a model of spins 1/2 on a square lattice, generalizing the quantum compass model via the addition of perturbing Heisenberg interactions between nearest neighbors, and investigate its phase diagram and magnetic excitations. This model has motivations both from the field of strongly correlated systems with orbital degeneracy and from that of solid-state based devices proposed for quantum computing. We find that the high degeneracy of ground states of the compass model is fragile and changes into twofold degenerate ground states for any finite amplitude of Heisenberg coupling. By computing the spin structure factors of finite clusters with Lanczos diagonalization, we evidence a rich variety of phases characterized by Z2 symmetry, that are either ferromagnetic, C-type antiferromagnetic, or of Neel type, and analyze the effects of quantum fluctuations on phase boundaries. In the ordered phases the anisotropy of compass interactions leads to a finite excitation gap to spin waves. We show that for small nanoscale clusters with large anisotropy gap the lowest excitations are column-flip excitations that emerge due to Heisenberg perturbations from the manifold of degenerate ground states of the compass model. We derive an effective one-dimensional XYZ model which faithfully reproduces the exact structure of these excited states and elucidates their microscopic origin. The low energy column-flip or compass-type excitations are robust against decoherence processes and are therefore well designed for storing information in quantum computing. We also point out that the dipolar interactions between nitrogen-vacancy centers forming a rectangular lattice in a diamond matrix may permit a solid-state realization of the anisotropic compass-Heisenberg model.
Physical Review B | 2011
Fabien Trousselet; Giniyat Khaliullin; Peter Horsch
We study the ground state properties of the Kitaev-Heisenberg model in a magnetic field and explore the evolution of spin correlations in the presence of non-magnetic vacancies. By means of exact diagonalizations, the phase diagram without vacancies is determined as a function of the magnetic field and the ratio between Kitaev and Heisenberg interactions. We show that in the (antiferromagnetic) stripe ordered phase the static susceptibility and its anisotropy can be described by a spin canting mechanism, accounting as well for the transition to the polarized phase when including quantum fluctuations perturbatively. Effects of spin vacancies depend sensitively on the type of the ground state. In the liquid phase, the magnetization pattern around a single vacancy in a small field is determined, and its spatial anisotropy is related to that of non-zero further neighbor correlations induced by the field and/or Heisenberg interactions. In the stripe phase, the combination of a vacancy and a small field breaks the six-fold symmetry of the model and stabilizes a particular stripe pattern. Similar symmetry-breaking effects occur even at zero field due to effective interactions between vacancies. This selection mechanism and intrinsic randomness of vacancy positions may lead to spin-glass behavior.
Physical Review Letters | 2013
Fabien Trousselet; Mona Berciu; Andrzej M. Oleś; Peter Horsch
We study two Kitaev-Heisenberg t-J-like models on a honeycomb lattice, focusing on the zigzag magnetic phase of Na(2)IrO(3), and investigate hole motion by exact diagonalization and variational methods. The spectral functions are quite distinct from those of cuprates and are dominated by large incoherent spectral weight at high energy, almost independent of the microscopic parameters-a universal and generic feature for zigzag magnetic correlations. We explain why quasiparticles at low energy are strongly suppressed in the photoemission spectra and determine an analog of a pseudogap. We point out that the qualitative features of the predominantly incoherent spectra obtained within the two different models for the zigzag phase are similar, and they have a remarkable similarity to recently reported angular resolved photoemission spectra for Na(2)IrO(3).
Physical Review B | 2006
Didier Poilblanc; Fabien Alet; Federico Becca; Arnaud Ralko; Fabien Trousselet; Frederic Mila
A family of models is proposed to describe the motion of holes in a fluctuating quantum dimer background on the square lattice. Following Castelnovo et al. [Ann. Phys. (NY) 318, 316 (2005)], a generalized Rokhsar-Kivelson Hamiltonian at **finite doping** which can be mapped on a **doped** interacting classical dimer model is constructed. A simple physical extension of this model is also considered. Using numerical computations and simple considerations based on the above exact mapping, we determine the phase diagram of the model showing a number of quantum phases typical of a doped Mott insulator. The two-hole correlation function generically exhibits short-range or long-range algebraic correlations in the solid (columnar) and liquid (critical) phases of the model, respectively. Evidence for an extended region of a doped VBS phase exhibiting holon pairing but **no** phase separation is given. In contrast, we show that hole deconfinement occurs in the staggered dimer phase.
Physical Review Letters | 2010
Arnaud Ralko; Fabien Trousselet; Didier Poilblanc
Bosonic and fermionic Hubbard models on the checkerboard lattice are studied numerically for infinite on-site repulsion. At particle density n=1/4 and strong nearest-neighbor repulsion, insulating Valence-Bond crystals (VBC) of resonating particle pairs are stabilized. Their melting into superfluid or metallic phases under increasing hopping is investigated at T=0 K. We identify a novel and unconventional commensurate VBC supersolid region, precursor to the melting of the bosonic crystal. Hardcore bosons (spins) are compared to fermions (electrons), as well as positive to negative (frustrating) hoppings.
Physical Review B | 2014
Fabien Trousselet; Peter Horsch; Andrzej M. Oleś; Wen-Long You
We explore with exact diagonalization the propagation of a single hole in four magnetic phases of the t-J-like Kitaev-Heisenberg model on a honeycomb lattice: the Neel antiferromagnetic, stripe, zigzag and Kitaev spin-liquid phase. We find coherent propagation of spin-polaron quasiparticles in the antiferromagnetic phase by a similar mechanism as in the
Physical Review B | 2012
Fabien Trousselet; Arnaud Ralko; Andrzej M. Oleś
t
Physical Review B | 2014
Fabien Trousselet; Pamela Rueda-Fonseca; Arnaud Ralko
-
Physical Review Letters | 2018
Mia Baise; Phillip Michael Maffettone; Fabien Trousselet; Nicholas P. Funnell; François-Xavier Coudert; Andrew L. Goodwin
J
Physical Review Letters | 2013
Mihael Srđan Grbić; S. Krämer; C. Berthier; Fabien Trousselet; Olivier Cepas; Hidekazu Tanaka; M. Horvatic
model for high-