Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabienne Cléard is active.

Publication


Featured researches published by Fabienne Cléard.


The EMBO Journal | 1997

SU(VAR)3‐7, a Drosophila heterochromatin‐associated protein and companion of HP1 in the genomic silencing of position‐effect variegation

Fabienne Cléard; Marion Delattre; Pierre Spierer

An increase in the dose of the Su(var)3‐7 locus of Drosophila melanogaster enhances the genomic silencing of position‐effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3‐7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2‐5 locus and its heterochromatin‐associated protein HP1, the presumed co‐operation of the two proteins was tested further. The effect of the dose of Su(var)3‐7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2‐5 reported by others. In addition, the two loci interact genetically, and the two proteins co‐immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3‐7 and HP1 co‐operate in building the genomic silencing associated with heterochromatin.


Nature Genetics | 2006

Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification

Fabienne Cléard; Yuri M. Moshkin; François Karch; Robert K. Maeda

A cis-regulatory region of nearly 300 kb controls the expression of the three bithorax complex (BX-C) homeotic genes: Ubx, abd-A and Abd-B. Interspersed between the numerous enhancers and silencers within the complex are elements called domain boundaries. Recently, many pieces of evidence have suggested that boundaries function to create autonomous domains by interacting among themselves and forming chromatin loops. In order to test this hypothesis, we used Dam identification to probe for interactions between the Fab-7 boundary and other regions in the BX-C. We were surprised to find that the targeting of Dam methyltransferase (Dam) to the Fab-7 boundary results in a strong methylation signal at the Abd-Bm promoter, ∼35 kb away. Moreover, this methylation pattern is found primarily in the tissues where Abd-B is not expressed and requires an intact Fab-7 boundary. Overall, our work provides the first documented example of a dynamic, long-distance physical interaction between distal regulatory elements within a living, multicellular organism.


Development | 2006

Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex

József Mihály; Stéphane Barges; László Sipos; Robert K. Maeda; Fabienne Cléard; Ilham Hogga; Welcome Bender; Henrik Gyurkovics; François Karch

The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.


EMBO Reports | 2001

Position-effect variegation in Drosophila: the modifier Su(var)3-7 is a modular DNA-binding protein

Fabienne Cléard; Pierre Spierer

An increase in the dose of the Su(var)3‐7 locus of Drosophila augments heterochromatin‐promoted variegated silencing. The deduced protein sequence of Su(var)3‐7 reveals seven widely spaced zinc fingers. We found that Su(var)3‐7 has affinity for DNA in vitro and that the minimal protein sequence requirement for DNA binding is any module containing two zinc fingers and the interval between them. As Su(var)3‐7 is a heterochromatin‐associated protein, we tested its affinity for various satellite DNA sequences in vitro. The AATAT and 353‐bp elements have the highest affinity. If affinity for satellite DNAs contributes to the presence of Su(var)3‐7 in heterochromatin, a general affinity for DNA, or sequences yet to be determined, suggests a function in the genomic silencing of position‐effect variegation: expansion of heterochromatin, whether continuous by spreading or discontinuous by pairing with sequence elements scattered through euchromatin, could use the affinity of Su(var)3‐7 for DNA.


Development | 2008

Boundary swapping in the Drosophila Bithorax complex

Carole Iampietro; Fabienne Cléard; Henrik Gyurkovics; Robert K. Maeda; François Karch

Although the boundary elements of the Drosophila Bithorax complex (BX-C) have properties similar to chromatin insulators, genetic substitution experiments have demonstrated that these elements do more than simply insulate adjacent cis-regulatory domains. Many BX-C boundaries lie between enhancers and their target promoter, and must modulate their activity to allow distal enhancers to communicate with their target promoter. Given this complex function, it is surprising that the numerous BX-C boundaries share little sequence identity. To determine the extent of the similarity between these elements, we tested whether different BX-C boundary elements can functionally substitute for one another. Using gene conversion, we exchanged the Fab-7 and Fab-8 boundaries within the BX-C. Although the Fab-8 boundary can only partially substitute for the Fab-7 boundary, we find that the Fab-7 boundary can almost completely replace the Fab-8 boundary. Our results suggest that although boundary elements are not completely interchangeable, there is a commonality to the mechanism by which boundaries function. This commonality allows different DNA-binding proteins to create functional boundaries.


Molecular and Cellular Biology | 2015

Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex.

Daniel Wolle; Fabienne Cléard; Tsutomu Aoki; Girish Deshpande; Paul Schedl; François Karch

ABSTRACT Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C.


PLOS Genetics | 2016

Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex.

Olga Kyrchanova; Vladic Mogila; Daniel Wolle; Girish Deshpande; Alexander Parshikov; Fabienne Cléard; François Karch; Paul Schedl; Pavel Georgiev

Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.


Methods of Molecular Biology | 2014

DamID as an Approach to Studying Long-Distance Chromatin Interactions

Fabienne Cléard; François Karch; Robert K. Maeda

How transcription is controlled by distally located cis-regulatory elements is an active area of research in biology. As such, there have been many techniques developed to probe these long-distance chromatin interactions. Here, we focus on one such method, called DamID (van Steensel and Henikoff, Nat Biotechnol 18(4):424-428, 2000). While other methods like 3C (Dekker et al., Science 295(5558):1306-1311, 2002), 4C (Simonis et al., Nat Genet 38(11):1348-1354, 2006; Zhao et al., Nat Genet 38(11):1341-1347, 2006), and 5C (Dostie et al., Genome Res 16(10):1299-1309, 2006) are undoubtedly powerful, the DamID method can offer some advantages over these methods if the genetic locus can be easily modified. The lack of tissue fixation, the low amounts of starting material required to perform the experiment, and the relatively modest hardware requirements make DamID experiments an interesting alternative to consider when examining long-distance chromatin interactions.


Genetics | 2017

Different Evolutionary Strategies to Conserve Chromatin Boundary Function in the Bithorax Complex

Fabienne Cléard; Daniel Wolle; Andrew M. Taverner; Tsutomu Aoki; Girish Deshpande; Peter Andolfatto; François Karch; Paul Schedl

Chromatin boundary elements subdivide chromosomes in multicellular organisms into physically independent domains. In addition to this architectural function, these elements also play a critical role in gene regulation. Here we investigated the evolution of a Drosophila Bithorax complex boundary element called Fab-7, which is required for the proper parasegment specific expression of the homeotic Abd-B gene. Using a “gene” replacement strategy, we show that Fab-7 boundaries from two closely related species, D. erecta and D. yakuba, and a more distant species, D. pseudoobscura, are able to substitute for the melanogaster boundary. Consistent with this functional conservation, the two known Fab-7 boundary factors, Elba and LBC, have recognition sequences in the boundaries from all species. However, the strategies used for maintaining binding and function in the face of sequence divergence is different. The first is conventional, and depends upon conservation of the 8 bp Elba recognition sequence. The second is unconventional, and takes advantage of the unusually large and flexible sequence recognition properties of the LBC boundary factor, and the deployment of multiple LBC recognition elements in each boundary. In the former case, binding is lost when the recognition sequence is altered. In the latter case, sequence divergence is accompanied by changes in the number, relative affinity, and location of the LBC recognition elements.


Genetics | 2018

The BEN Domain Protein Insensitive Binds to the Fab-7 Chromatin Boundary To Establish Proper Segmental Identity in Drosophila

Anna Fedotova; Tsutomu Aoki; Mikaël Rossier; Rakesh K. Mishra; Chaevia Clendinen; Olga Kyrchanova; Daniel Wolle; Artem Bonchuk; Robert K. Maeda; Annick Mutero; Fabienne Cléard; Vladic Mogila; François Karch; Pavel Georgiev; Paul Schedl

Boundaries (insulators) in the Drosophila bithorax complex (BX-C) delimit autonomous regulatory domains that orchestrate the parasegment (PS)-specific expression of the BX-C homeotic genes. The Fab-7 boundary separates the iab-6 and iab-7 regulatory domains, which control Abd-B expression in PS11 and PS12, respectively. This boundary is composed of multiple functionally redundant elements and has two key functions: it blocks cross talk between iab-6 and iab-7 and facilitates boundary bypass. Here, we show that two BEN domain protein complexes, Insensitive and Elba, bind to multiple sequences located in the Fab-7 nuclease hypersensitive regions. Two of these sequences are recognized by both Insv and Elba and correspond to a CCAATTGG palindrome. Elba also binds to a related CCAATAAG sequence, while Insv does not. However, the third Insv recognition sequences is ∼100 bp in length and contains the CCAATAAG sequence at one end. Both Insv and Elba are assembled into large complexes (∼420 and ∼265–290 kDa, respectively) in nuclear extracts. Using a sensitized genetic background, we show that the Insv protein is required for Fab-7 boundary function and that PS11 identity is not properly established in insv mutants. This is the first demonstration that a BEN domain protein is important for the functioning of an endogenous fly boundary.

Collaboration


Dive into the Fabienne Cléard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Gyurkovics

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Olga Kyrchanova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pavel Georgiev

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge