Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabienne Rolling is active.

Publication


Featured researches published by Fabienne Rolling.


Molecular Therapy | 2003

Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery

M. Weber; Joseph E. Rabinowitz; Nathalie Provost; Hervé Conrath; Sébastien Folliot; Delphine Briot; Yan Cherel; Pierre Chenuaud; Jude Samulski; Philippe Moullier; Fabienne Rolling

We previously described chimeric recombinant adeno-associated virus (rAAV) vectors 2/4 and 2/5 as the most efficient vectors in rat retina. We now characterize these two vectors carrying the CMV.gfp genome following subretinal injection in the Wistar rat, beagle dog, and cynomolgus macaque. Both serotypes displayed stable GFP expression for the duration of the experiment (6 months) in all three animal models. Similar to the AAV-2 serotype, AAV-2/5 transduced both RPE and photoreceptor cells, with higher level of transduction in photoreceptors, whereas rAAV-2/4 transduction was unambiguously restricted to RPE cells. This unique specificity found conserved among all three species makes AAV-2/4-derived vectors attractive for retinal diseases originating in RPE such as Leber congenital amaurosis (RPE65) or retinitis pigmentosa due to a mutated mertk gene. To provide further important preclinical data, vector shedding was monitored by PCR in various biological fluids for 2 months post-rAAV administration. Following rAAV-2/4 and -5 subretinal delivery in dogs (n = 6) and in nonhuman primates (n = 2), vector genome was found in lacrymal and nasal fluids for up to 3-4 days and in the serum for up to 15-20 days. Overall, these findings will have a practical impact on the development of future gene therapy trials of retinal diseases.


Gene Therapy | 2007

Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium.

G Le Meur; Knut Stieger; Alexander J. Smith; M. Weber; Jack-Yves Deschamps; D. Nivard; Alexandra Mendes-Madeira; Nathalie Provost; Yann Péréon; Yan Cherel; Robin R. Ali; Christian P. Hamel; Philippe Moullier; Fabienne Rolling

Previous studies have tested gene replacement therapy in RPE65-deficient dogs using recombinant adeno-associated virus 2/2 (rAAV2/2), -2/1 or -2/5 mediated delivery of the RPE65 gene. They all documented restoration of dark- and light-adapted electroretinography responses and improved psychophysical outcomes. Use of a specific RPE65 promoter and a rAAV vector that targets transgene expression specifically to the RPE may, however, provide a safer setting for the long-term therapeutic expression of RPE65. Subretinal injection of rAAV2 pseudotyped with serotype 4 (rAAV2/4) specifically targets the RPE. The purpose of our study was to evaluate a rAAV2/4 vector carrying a human RPE65cDNA driven by a human RPE65 promoter, for the ability to restore vision in RPE65−/− purebred Briard dogs and to assess the safety of gene transfer with respect to retinal morphology and function. rAAV2/4 and rAAV2/2 vectors containing similar human RPE65 promoter and cDNA cassettes were generated and administered subretinally in eight affected dogs, ages 8–30 months (n=6 with rAAV2/4, n=2 with rAAV2/2). Although fluorescein angiography and optical coherence tomography examinations displayed retinal abnormalities in treated retinas, electrophysiological analysis demonstrated that restoration of rod and cone photoreceptor function started as soon as 15 days post-injection, reaching maximal function at 3 months post-injection, and remaining stable thereafter in all animals treated at 8–11 months of age. As assessed by the ability of these animals to avoid obstacles in both dim and normal light, functional vision was restored in the treated eye, whereas the untreated contralateral eye served as an internal control. The dog treated at a later age (30 months) did not recover retinal function or vision, suggesting that there might be a therapeutic window for the successful treatment of RPE65−/− dogs by gene replacement therapy.


Journal of Virology | 2008

Adeno-Associated Virus Vector Genomes Persist as Episomal Chromatin in Primate Muscle

Magalie Penaud-Budloo; Caroline Le Guiner; Ali Nowrouzi; Alice Toromanoff; Yan Cherel; Pierre Chenuaud; Manfred Schmidt; Christof von Kalle; Fabienne Rolling; Philippe Moullier; Richard O. Snyder

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors are capable of mediating long-term gene expression following administration to skeletal muscle. In rodent muscle, the vector genomes persist in the nucleus in concatemeric episomal forms. Here, we demonstrate with nonhuman primates that rAAV vectors integrate inefficiently into the chromosomes of myocytes and reside predominantly as episomal monomeric and concatemeric circles. The episomal rAAV genomes assimilate into chromatin with a typical nucleosomal pattern. The persistence of the vector genomes and gene expression for years in quiescent tissues suggests that a bona fide chromatin structure is important for episomal maintenance and transgene expression. These findings were obtained from primate muscles transduced with rAAV1 and rAAV8 vectors for up to 22 months after intramuscular delivery of 5 × 1012 viral genomes/kg. Because of this unique context, our data, which provide important insight into in situ vector biology, are highly relevant from a clinical standpoint.


Advanced Drug Delivery Reviews | 2009

In vivo gene regulation using tetracycline-regulatable systems.

Knut Stieger; Brahim Belbellaa; Caroline Le Guiner; Philippe Moullier; Fabienne Rolling

Abstract Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.


Molecular Therapy | 2008

Safety and Efficacy of Regional Intravenous (RI) Versus Intramuscular (IM) Delivery of rAAV1 and rAAV8 to Nonhuman Primate Skeletal Muscle

Alice Toromanoff; Yan Cherel; Mickaël Guilbaud; Magalie Penaud-Budloo; Richard O. Snyder; Mark E. Haskins; Jack-Yves Deschamps; Lydie Guigand; Guillaume Podevin; Valder R. Arruda; Katherine A. High; Hansell H. Stedman; Fabienne Rolling; Ignacio Anegon; Philippe Moullier; Caroline Le Guiner

We developed a drug-free regional intravenous (RI) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (IM) delivery of the same dose of vector. We show that RI delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After IM, muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although RI delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that RI is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.We developed a drug-free regional intravenous (r.i.) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (i.m.) delivery of the same dose of vector. We show that r.i. delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After i.m., muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although r.i. delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that r.i. is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.


Molecular Therapy | 2008

Subretinal Delivery of Recombinant AAV Serotype 8 Vector in Dogs Results in Gene Transfer to Neurons in the Brain

Knut Stieger; Marie-Anne Colle; Laurence Dubreil; Alexandra Mendes-Madeira; M. Weber; Guylène Le Meur; Jack Yves Deschamps; Nathalie Provost; D. Nivard; Yan Cherel; Philippe Moullier; Fabienne Rolling

Recombinant adeno-associated virus (rAAV) vectors are among the most efficient gene delivery vehicles for gene transfer to the retina. This study evaluates the behavior of the rAAV8 serotype vector with regard to intraocular delivery in rats and dogs. Subretinal delivery of an AAV2/8.gfp vector results in efficient gene transfer in the retinal pigment epithelium (RPE), the photoreceptors and, surprisingly, in the cells of the inner nuclear layer as well as in ganglion cells. Most importantly, in dogs, gene transfer also occurred distal to the injection site in neurons of the lateral geniculate nucleus of the brain. Because green fluorescent protein (GFP) was detected along the visual pathway within the brain, we analyzed total DNA extracted from various brain slices using PCR. Vector sequences were detected in many parts of the brain, but chiefly in the contralateral hemisphere.


Journal of Gene Medicine | 2003

Sustained tetracycline-regulated transgene expression in vivo in rat retinal ganglion cells using a single type 2 adeno-associated viral vector

Sébastien Folliot; Delphine Briot; Hervé Conrath; Nathalie Provost; Yan Cherel; Philippe Moullier; Fabienne Rolling

Viral vector delivery of neurotrophic‐expressing transgenes in the retina may retard or prevent the onset of blindness associated with photoreceptor degeneration. A key safety issue is to achieve regulated expression of these genes in the retina. The purpose of our study was to evaluate whether a single recombinant AAV‐2 (rAAV) encoding for a tetracycline (Tet)‐regulated destabilized reporter gene could provide quantitative profiles of gene regulation targeted to the rat neuroretina.


Molecular Therapy | 2009

Detection of Intact rAAV Particles up to 6 Years After Successful Gene Transfer in the Retina of Dogs and Primates

Knut Stieger; Josef Schroeder; Nathalie Provost; Alexandra Mendes-Madeira; Brahim Belbellaa; Guylène Le Meur; M. Weber; Jack-Yves Deschamps; Birgit Lorenz; Philippe Moullier; Fabienne Rolling

Gene transfer to the retina using recombinant adeno-associated viral (rAAV) vectors has proven to be an effective option for the treatment of retinal degenerative diseases in several animal models and has recently advanced into clinical trials in humans. To date, intracellular trafficking of AAV vectors and subsequent capsid degradation has been studied only in vitro, but the fate of AAV particles in transduced cells following subretinal injection has yet to be elucidated. Using electron microscopy and western blot, we analyzed retinas of one primate and four dogs that had been subretinally injected with AAV2/4, -2/5, or -2/2 serotypes and that displayed efficient gene transfer over several years. We show that intact AAV particles are still present in retinal cells, for up to 6 years after successful gene transfer in these large animals. The persistence of intact vector particles in the target organ, several years postadministration, is totally unexpected and, therefore, represents a new and unanticipated safety issue to consider at a time when gene therapy clinical trials raise new immunological concerns.Gene transfer to the retina using recombinant adeno-associated viral (rAAV) vectors has proven to be an effective option for the treatment of retinal degenerative diseases in several animal models and has recently advanced into clinical trials in humans. To date, intracellular trafficking of AAV vectors and subsequent capsid degradation has been studied only in vitro, but the fate of AAV particles in transduced cells following subretinal injection has yet to be elucidated. Using electron microscopy and western blot, we analyzed retinas of one primate and four dogs that had been subretinally injected with AAV2/4, -2/5, or -2/2 serotypes and that displayed efficient gene transfer over several years. We show that intact AAV particles are still present in retinal cells, for up to 6 years after successful gene transfer in these large animals. The persistence of intact vector particles in the target organ, several years postadministration, is totally unexpected and, therefore, represents a new and unanticipated safety issue to consider at a time when gene therapy clinical trials raise new immunological concerns.


Molecular Therapy | 2010

Lack of Immunotoxicity After Regional Intravenous (RI) Delivery of rAAV to Nonhuman Primate Skeletal Muscle

Alice Toromanoff; Oumeya Adjali; Thibaut Larcher; Marcelo Hill; Lydie Guigand; Pierre Chenuaud; Jack-Yves Deschamps; Olivier Gauthier; Gilles Blancho; Bernard Vanhove; Fabienne Rolling; Yan Cherel; Philippe Moullier; Ignacio Anegon; Caroline Le Guiner

In the absence of an immune response from the host, intramuscular (IM) injection of recombinant adeno-associated virus (rAAV) results in the permanent expression of the transgene from mouse to primate models. However, recent gene transfer studies into animal models and humans indicate that the risk of transgene and/or capsid-specific immune responses occurs and depends on multiple factors. Among these factors, the route of delivery is important, although poorly addressed in large animal models. Here, we compare the IM and the drug-free regional intravenous (RI) deliveries of rAAV in nonhuman primate (NHP) skeletal muscle monitoring the host immune response toward the transgene. We show that IM is consistently associated with immunotoxicity and the destruction of the genetically modified myofibers, whereas RI allows the stable expression of the transgene. This has important implications for the design of clinical trials for gene transfer in skeletal muscle.


Molecular Therapy | 2012

Restoration of vision in the pde6β-deficient dog, a large animal model of rod-cone dystrophy.

Lolita Petit; Elsa Lhériteau; M. Weber; Guylène Le Meur; Jack-Yves Deschamps; Nathalie Provost; Alexandra Mendes-Madeira; Lyse Libeau; Caroline Guihal; Marie-Anne Colle; Philippe Moullier; Fabienne Rolling

Defects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6β (n = 4) or AAV2/8RK.cpde6β (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6β- and AAV2/8RK.cpde6β-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.

Collaboration


Dive into the Fabienne Rolling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Weber

University of Nantes

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Cherel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Stieger

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge