Fabienne Z. Gaugaz
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabienne Z. Gaugaz.
Nature | 2014
Helge Gad; Tobias Koolmeister; Ann-Sofie Jemth; Saeed Eshtad; Sylvain A. Jacques; Cecilia E. Ström; Linda M. Svensson; Niklas Schultz; Thomas Lundbäck; Berglind O. Einarsdottir; Aljona Saleh; Camilla Göktürk; Pawel Baranczewski; Richard Svensson; Ronnie P.-A. Berntsson; Robert Gustafsson; Kia Strömberg; Kumar Sanjiv; Marie-Caroline Jacques-Cordonnier; Matthieu Desroses; Anna-Lena Gustavsson; Roger Olofsson; Fredrik Johansson; Evert Homan; Olga Loseva; Lars Bräutigam; Lars Johansson; Andreas Höglund; Anna Hagenkort; Therese Pham
Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
Analytical Chemistry | 2015
Jacek R. Wiśniewski; Fabienne Z. Gaugaz
The determination of total protein content is one of the most frequent analytical tasks in biochemistry and molecular biology. Here we evaluate measurements of tryptophan fluorescence (WF) for total protein determination in whole tissue lysates and for peptide quantification in protein digests. We demonstrate that the fluorescence spectrometry of tryptophan offers a simple, sensitive, and direct method for protein and peptide assays. The WF assay is fully compatible with SDS and other solutes that are commonly used for lysis of tissue and cells. We found that the content of tryptophan varies only a little between mouse tissues (1.16 ± 0.08% of total amino acids) and is similar in human cells (1.19 ± 0.06%). Therefore, free tryptophan can be used as a universal standard. We show that the assay can be carried out on a standard fluorescence spectrometer with cuvettes as well as in a 96-well format using a plate reader. The method is particularly suitable for determination of peptide content in diluted samples. Notably, the whole sample can be recovered after the measurement.
Annals of Oncology | 2016
U. Warpman Berglund; Kumar Sanjiv; Helge Gad; Christina Kalderén; Tobias Koolmeister; Therese Pham; Camilla Göktürk; Rozbeh Jafari; Gianluca Maddalo; B. Seashore-Ludlow; A. Chernobrovkin; A. Manoilov; I. S. Pateras; A. Rasti; Ann-Sofie Jemth; Ingrid Almlöf; Olga Loseva; Torkild Visnes; Berglind O. Einarsdottir; Fabienne Z. Gaugaz; Aljona Saleh; B. Platzack; Olov A. Wallner; Karl S. A. Vallin; Martin Henriksson; P. Wakchaure; S. Borhade; P. Herr; Y. Kallberg; Pawel Baranczewski
BACKGROUND Previously, we showed cancer cells rely on the MTH1 protein to prevent incorporation of otherwise deadly oxidised nucleotides into DNA and we developed MTH1 inhibitors which selectively kill cancer cells. Recently, several new and potent inhibitors of MTH1 were demonstrated to be non-toxic to cancer cells, challenging the utility of MTH1 inhibition as a target for cancer treatment. MATERIAL AND METHODS Human cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA or shRNA. 8-oxodG was measured by immunostaining and modified comet assay. Thermal Proteome profiling, proteomics, cellular thermal shift assays, kinase and CEREP panel were used for target engagement, mode of action and selectivity investigations of MTH1 inhibitors. Effect of MTH1 inhibition on tumour growth was explored in BRAF V600E-mutated malignant melanoma patient derived xenograft and human colon cancer SW480 and HCT116 xenograft models. RESULTS Here, we demonstrate that recently described MTH1 inhibitors, which fail to kill cancer cells, also fail to introduce the toxic oxidized nucleotides into DNA. We also describe a new MTH1 inhibitor TH1579, (Karonudib), an analogue of TH588, which is a potent, selective MTH1 inhibitor with good oral availability and demonstrates excellent pharmacokinetic and anti-cancer properties in vivo. CONCLUSION We demonstrate that in order to kill cancer cells MTH1 inhibitors must also introduce oxidized nucleotides into DNA. Furthermore, we describe TH1579 as a best-in-class MTH1 inhibitor, which we expect to be useful in order to further validate the MTH1 inhibitor concept.
Molecular Pharmaceutics | 2017
Christine Wegler; Fabienne Z. Gaugaz; Tommy B. Andersson; Jacek R. Wiśniewski; Diana Busch; Christian Gröer; Stefan Oswald; Agneta Norén; Frederik Weiss; Helen Hammer; Thomas O. Joos; Oliver Poetz; Brahim Achour; Amin Rostami-Hodjegan; Evita van de Steeg; Heleen M. Wortelboer; Per Artursson
Many different methods are used for mass-spectrometry-based protein quantification in pharmacokinetics and systems pharmacology. It has not been established to what extent the results from these various methods are comparable. Here, we compared six different mass spectrometry-based proteomics methods by measuring the expression of clinically relevant drug transporters and metabolizing enzymes in human liver. Mean protein concentrations were in general quantified to similar levels by methods using whole tissue lysates. Methods using subcellular membrane fractionation gave incomplete enrichment of the proteins. When the enriched proteins were adjusted to levels in whole tissue lysates, they were on average 4-fold lower than those quantified directly in whole tissue lysates. The differences in protein levels were propagated into differences in predictions of hepatic clearance. In conclusion, caution is needed when comparing and applying quantitative proteomics data obtained with different methods, especially since membrane fractionation is common practice for protein quantification used in drug clearance predictions.
Journal of Pharmaceutical Sciences | 2016
Ivailo Simoff; Maria Karlgren; Maria Backlund; Anne-Christine Lindström; Fabienne Z. Gaugaz; Pär Matsson; Per Artursson
Madin-Darby canine kidney II cells transfected with one or several transport proteins are commonly used models to study drug transport. In these cells, however, endogenous transporters such as canine Mdr1/P-glycoprotein (Abcb1) complicate the interpretation of transport studies. The aim of this investigation was to establish a Madin-Darby canine kidney II cell line using CRISPR-Cas9 gene-editing technology to knock out endogenous canine Mdr1 (cMdr1) expression. CRISPR-Cas9-mediated Abcb1 homozygous disruption occurred at frequencies of around 20% and resulted in several genotypes. We selected 1 clonal cell line, cMdr1 KO Cl2, for further examination. Consistent with an on-target effect of CRISPR-Cas9 in specific regions of the endogenous canine Abcb1 gene, we obtained a cell clone with Abcb1 gene alterations and without any cMdr1 expression, as confirmed by genome sequencing and quantitative protein analysis. Functional studies of these cells, using digoxin and other prototypic MDR1 substrates, showed close to identical transport in the apical-to-basolateral and basolateral-to-apical directions, resulting in efflux ratios indistinguishable from unity.
European Journal of Pharmaceutical Sciences | 2017
Anna Skogh; Anna Lesniak; Fabienne Z. Gaugaz; Richard Svensson; Gunnar Lindeberg; Rebecca Fransson; Fred Nyberg; Mathias Hallberg; Anja Sandström
Abstract The heptapeptide SP1–7 (1, Arg1‐Pro2‐Lys3‐Pro4‐Gln5‐Gln6‐Phe7) is the major bioactive metabolite formed after proteolytic processing of the neuropeptide substance P (SP, Arg1‐Pro2‐Lys3‐Pro4‐Gln5‐Gln6‐Phe7‐Phe8‐Gly9‐Leu10‐Met11‐NH2). The heptapeptide 1 frequently exhibits opposite effects to those induced by SP, such as exerting antinociception, or attenuating thermal hyperalgesia and mechanical allodynia. The heptapeptide SP1–7 amide (2, Arg1‐Pro2‐Lys3‐Pro4‐Gln5‐Gln6‐Phe7‐NH2) is often more efficacious than 1 in experimental pain models. We have now assessed the anti‐allodynic outcome after systemic administration of 2 and a series of Ala‐substituted and truncated analogues of 2, in the spared nerve injury (SNI) mice model and the results obtained were correlated with in vitro plasma stability and permeability measurements. It is herein demonstrated that an intact Arg1 in SP1–7 amide analogues is fundamental for retaining a potent in vivo effect, while Lys3 of 2 is less important. A displacement with Ala1 or truncation rendered the peptide analogues either inactive or with a significantly attenuated in vivo activity. Thus, the pentapeptide SP3–7 amide (7, t1/2 = 11.1 min) proven to be the major metabolite of 2, demonstrated an in vivo effect itself although considerably less significant than 2 in the SNI model. Intraperitoneal administration of 2 in a low dose furnished the most powerful anti‐allodynic effect in the SNI model of all the analogous evaluated, despite a fast proteolysis of 2 in plasma (t1/2 = 6.4 min). It is concluded that not only the C‐terminal residue, that we previously demonstrated, but also the N‐terminal with its basic side chain, are important for achieving effective pain relief. This information is of value for the further design process aimed at identifying more drug‐like SP1–7 amide related peptidomimetics with pronounced anti‐allodynic effects. Graphical abstract Figure. No Caption available.
European Journal of Pharmaceutical Sciences | 2017
Anna Skogh; Anna Lesniak; Fabienne Z. Gaugaz; Richard Svensson; Gunnar Lindeberg; Rebecca Fransson; Fred Nyberg; Mathias Hallberg; Anja Sandström
&NA; Substance P 1–7 (SP1–7, Arg1‐Pro2‐Lys3‐Pro4‐Gln5‐Gln6‐Phe7) is the major bioactive metabolite formed after proteolytic degradation of the tachykinin substance P (SP). This heptapeptide often opposes the effects of the mother peptide. Hence, SP1–7 is having anti‐inflammatory, anti‐nociceptive and anti‐hyperalgesic effects in experimental models. Despite all encouraging properties of SP1–7 its exact mode of action has not yet been elucidated which has hampered further development of this heptapeptide in drug discovery. Contrary to SP that mediates its biological activity via the NK‐1 receptor, the N‐terminal fragment SP1–7 acts through an unknown target that is distinct from all known opioid and tachykinin receptors. The SP1–7 amide 1 (Arg1‐Pro2‐Lys3‐Pro4‐Gln5‐Gln6‐Phe7‐NH2) was previously shown to be superior to the endogenous SP1–7 in all experimental pain models where the two compounds were compared. Herein, we report that N‐methylation scan of the backbone of the SP1–7 amide (1) results in peptides that are significantly less prone to undergo proteolysis in plasma from both mouse and human. However, with the two exceptions of the [MeLys3]SP1–7 amide (3) and the [MeGln5]SP1–7 amide (4), the peptides with a methyl group attached to the backbone are devoid of significant anti‐allodynic effects after peripheral administration in the spared nerve injury (SNI) mouse model of neuropathic pain. It is suggested that the N‐methylation does not allow these peptides to form the accurate bioactive conformations or interactions required for efficient binding to the macromolecular target. The importance of intact N‐terminal Arg1 and C‐terminal Phe7, anticipated to serve as address and message residues, respectively, for achieving the anti‐allodynic effect is emphasized. Notably, the three heptapeptides: the SP1–7 amide (1), the [MeLys3]SP1–7 amide (3) amide and the [MeGln5]SP1–7 amide (4) are all considerably more effective in the SNI mouse model than gabapentin that is widely used in the clinic for treatment of neuropathic pain. Graphical abstract Figure. No caption available.
Nature | 2017
Helge Gad; Tobias Koolmeister; Ann-Sofie Jemth; Saeed Eshtad; Sylvain A. Jacques; Cecilia E. Ström; Linda M. Svensson; Niklas Schultz; Thomas Lundbäck; Berglind O. Einarsdottir; Aljona Saleh; Camilla Göktürk; Pawel Baranczewski; Richard Svensson; Ronnie P.-A. Berntsson; Robert Gustafsson; Kia Strömberg; Kumar Sanjiv; Marie-Caroline Jacques-Cordonnier; Matthieu Desroses; Anna-Lena Gustavsson; Roger Olofsson; Fredrik Johansson; Evert Homan; Olga Loseva; Lars Bräutigam; Lars Johansson; Andreas Höglund; Anna Hagenkort; Therese Pham
Nature 508, 215–221 (2014); doi:10.1038/nature13181 In this Article, the structure of compound TH650 (4) in Fig. 4a was drawn incorrectly; the correct structure is shown as Fig. 1 to this Corrigendum. Preparative, spectroscopic and biological data associated with this compound are as reported in theArticle, and the error does not influence any of the reported data or interpretations.
Bioorganic & Medicinal Chemistry Letters | 2018
Anna Skogh; Anna Lesniak; Christian Sköld; Maria Karlgren; Fabienne Z. Gaugaz; Richard Svensson; Shanti Diwakarla; Rebecca Fransson; Fred Nyberg; Mathias Hallberg; Anja Sandström
The dipeptide amide H-Phe-Phe-NH2 (1) that previously was identified as a ligand for the substance P 1-7 (SP1-7) binding site exerts intriguing results in animal models of neuropathic pain after central but not after peripheral administration. The dipeptide 1 is derived from stepwise modifications of the anti-nociceptive heptapeptide SP1-7 and the tetrapeptide endomorphin-2 that is also binding to the SP1-7 site. We herein report a strong anti-allodynic effect of a new H-Phe-Phe-NH2 peptidomimetic (4) comprising an imidazole ring as a bioisosteric element, in the spare nerve injury (SNI) mice model after peripheral administration. Peptidomimetic 4 was stable in plasma, displayed a fair membrane permeability and a favorable neurotoxic profile. Moreover, the effective dose (ED50) of 4 was superior as compared to gabapentin and morphine that are used in clinic.
Archive | 2018
Anna Skogh; Anna Lesniak; Christian Sköld; Maria Karlgren; Fabienne Z. Gaugaz; Richard Svensson; Shanti Diwakarla; Rebecca Fransson; Fred Nyberg; Mathias Hallberg; Anja Sandström