Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Buttari is active.

Publication


Featured researches published by Fabio Buttari.


The Journal of Pain | 2010

Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis.

Francesco Mori; Claudia Codecà; Hajime Kusayanagi; Fabrizia Monteleone; Fabio Buttari; Stefania Fiore; Giorgio Bernardi; Giacomo Koch; Diego Centonze

UNLABELLED Neuropathic pain in patients with MS is frequent and is associated with a great interference with daily life activities. In the present study, we investigated whether anodal transcranial direct current stimulation (tDCS) may be effective in reducing central chronic pain in MS patients. Patients received sham tDCS or real tDCS in a 5-day period of treatment in a randomized, double blind, sham-controlled study. Pain was measured using visual analog scale (VAS) for pain and the short form McGill questionnaire (SF-MPQ). Quality of life was measured using the Multiple Sclerosis Quality of Life-54 scale (MSQoL-54). Depressive symptoms and anxiety were also evaluated as confounding factors using the Beck Depression Inventory (BDI) and VAS for anxiety. Evaluations were performed at baseline, immediately after the end of treatment, and once a week during a 3-week follow-up period. Following anodal but not sham tDCS over the motor cortex, there was a significant pain improvement as assessed by VAS for pain and McGill questionnaire, and of overall quality of life. No depression or anxiety changes were observed. Our results show that anodal tDCS is able to reduce pain-scale scores in MS patients with central chronic pain and that this effect outlasts the period of stimulation, leading to long-lasting clinical effects. PERSPECTIVE This article presents a new, noninvasive therapeutic approach to chronic, central neuropathic pain in multiple sclerosis, poorly responsive to current conventional medications. tDCS is known to cause long-lasting changes of neuronal excitability at the site of stimulation and in the connected areas in healthy subjects. This led us to hypothesize that pain decrease may be the result of functional plastic changes in brain structures involved in the pathogenesis of chronic neuropathic pain.


PLOS Pathogens | 2013

Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis

Daniela F. Angelini; Barbara Serafini; Eleonora Piras; Martina Severa; Eliana M. Coccia; Barbara Rosicarelli; Serena Ruggieri; Claudio Gasperini; Fabio Buttari; Diego Centonze; Rosella Mechelli; Marco Salvetti; Giovanna Borsellino; Luca Battistini

It has long been known that multiple sclerosis (MS) is associated with an increased Epstein-Barr virus (EBV) seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A) and lytic (BZLF-1, BMLF-1) antigens in relapsing-remitting MS patients (n = 113) and healthy donors (HD) (n = 43) and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse.


Multiple Sclerosis Journal | 2014

Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration

Silvia Rossi; Caterina Motta; Valeria Studer; Francesca Barbieri; Fabio Buttari; Alessandra Bergami; Giulia Maria Sancesario; Sergio Bernardini; Gottardo De Angelis; Gianvito Martino; Roberto Furlan; Diego Centonze

Background: Chronic inflammation leads to gray matter damage in progressive multiple sclerosis (MS), but the mechanism linking inflammation and neurodegeneration is unclear. Objective: The objective of this paper is to investigate the synaptic mechanism of inflammatory neurodegeneration in progressive forms of MS. Methods: Cytokine and neurofilament-light were determined in cerebrospinal fluid (CSF) of MS patients. In vitro electrophysiology and cell swelling experiments were performed to measure the effects of inflammatory cytokines in the CSF of MS patients on synaptic transmission and neuronal integrity. Results: Tumor necrosis factor-α (TNF) was higher in CSF of progressive MS subjects, and caused excitotoxic neuronal death in vitro. In murine brain slices incubated in the presence of CSF from progressive MS, in fact, we observed increased spontaneous excitatory postsynaptic currents (sEPSCs) and glutamate-mediated neuronal swelling through a mechanism dependent on enhanced TNF signaling. We also suggested a pathogenic role of B cells in TNF CSF increase, exacerbation of glutamatergic transmission and neuronal damage, since CNS depletion of B cells with intrathecal rituximab caused a dramatic reduction of TNF levels, of TNF-induced sEPSC alterations, and of neurofilament CSF concentrations in a patient with progressive MS. Conclusion: Our results point to TNF as a primary neurotoxic molecule in progressive forms of MS.


Neuropsychopharmacology | 2011

Cognitive and cortical plasticity deficits correlate with altered amyloid-β CSF levels in multiple sclerosis.

Francesco Mori; Silvia Rossi; Giulia Maria Sancesario; Claudia Codecà; Giorgia Mataluni; Fabrizia Monteleone; Fabio Buttari; Hajime Kusayanagi; Maura Castelli; Caterina Motta; Valeria Studer; Giorgio Bernardi; Giacomo Koch; Sergio Bernardini; Diego Centonze

Cognitive dysfunction is of frequent observation in multiple sclerosis (MS). It is associated with gray matter pathology, brain atrophy, and altered connectivity, and recent evidence showed that acute inflammation can exacerbate mental deficits independently of the primary functional system involved. In this study, we measured cerebrospinal fluid (CSF) levels of amyloid-β1−42 and τ protein in MS and in clinically isolated syndrome patients, as both proteins have been associated with cognitive decline in Alzheimers disease (AD). In AD, amyloid-β1–42 accumulates in the brain as insoluble extracellular plaques, possibly explaining why soluble amyloid-β1–42 is reduced in the CSF of these patients. In our sample of MS patients, amyloid-β1–42 levels were significantly lower in patients cognitively impaired (CI) and were inversely correlated with the number of Gadolinium-enhancing (Gd+) lesions at the magnetic resonance imaging (MRI). Positive correlations between amyloid-β1–42 levels and measures of attention and concentration were also found. Furthermore, abnormal neuroplasticity of the cerebral cortex, explored with θ burst stimulation (TBS), was observed in CI patients, and a positive correlation was found between amyloid-β1–42 CSF contents and the magnitude of long-term potentiation-like effects induced by TBS. No correlation was conversely found between τ protein concentrations and MRI findings, cognitive parameters, and TBS effects in these patients. Together, our results indicate that in MS, central inflammation is able to alter amyloid-β metabolism by reducing its concentration in the CSF and leading to impairment of synaptic plasticity and cognitive function.


The Journal of Neuroscience | 2012

TRPV1 Channels Regulate Cortical Excitability in Humans

Francesco Mori; Michele Ribolsi; Hajime Kusayanagi; Fabrizia Monteleone; Vilma Mantovani; Fabio Buttari; Elena Marasco; Giorgio Bernardi; Mauro Maccarrone; Diego Centonze

Studies in rodents show that transient receptor potential vanilloid 1 (TRPV1) channels regulate glutamate release at central and peripheral synapses. In humans, a number of nonsynonymous single-nucleotide polymorphisms (SNPs) have been described in the TRPV1 gene, and some of them significantly alter the functionality of the channel. To address the possible role of TRPV1 channels in the regulation of synaptic transmission in humans, we studied how TRPV1 genetic polymorphisms affect cortical excitability measured with transcranial magnetic stimulation (TMS). Two SNPs of the TRPV1 gene were selected and genotyped (rs222747 and rs222749) in a sample of 77 healthy subjects. In previous cell expression studies, the “G” allele of rs222747 was found to enhance the activity of the channel, whereas rs222749 had no functional effect. Allelic variants in the rs222749 region were not associated with altered cortical response to single, paired, and repetitive TMS. In contrast, subjects homozygous for the G allele in rs222747 exhibited larger short-interval intracortical facilitation (a measure of glutamate transmission) explored through paired-pulse TMS of the primary motor cortex. Recruitment curves, short-interval intracortical inhibition, intracortical facilitation, and long-interval intracortical inhibition were unchanged. LTP- and LTD-like plasticity explored through intermittent or continuous theta-burst stimulation was also similar in the “G” and “non-G” subjects. To our knowledge, our results provide the first evidence that TRPV1 channels regulate cortical excitability to paired-pulse stimulation in humans.


Neuromolecular Medicine | 2014

Interleukin-1β Promotes Long-Term Potentiation in Patients with Multiple Sclerosis

Francesco Mori; Robert Nisticò; Georgia Mandolesi; Sonia Piccinin; Dalila Mango; Hajime Kusayanagi; Nicola Berretta; Alessandra Bergami; Antonietta Gentile; Alessandra Musella; Carolina G. Nicoletti; Ferdinando Nicoletti; Fabio Buttari; Nicola B. Mercuri; Gianvito Martino; Roberto Furlan; Diego Centonze

The immune system shapes synaptic transmission and plasticity in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis (MS). These synaptic adaptations are believed to drive recovery of function after brain lesions, and also learning and memory deficits and excitotoxic neurodegeneration; whether inflammation influences synaptic plasticity in MS patients is less clear. In a cohort of 59 patients with MS, we found that continuous theta-burst transcranial magnetic stimulation did not induce the expected long-term depression (LTD)-like synaptic phenomenon, but caused persisting enhancement of brain cortical excitability. The amplitude of this long-term potentiation (LTP)-like synaptic phenomenon correlated with the concentration of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the cerebrospinal fluid. In MS and EAE, the brain and spinal cord are typically enriched of CD3+ T lymphocyte infiltrates, which are, along with activated microglia and astroglia, a major cause of inflammation. Here, we found a correlation between the presence of infiltrating T lymphocytes in the hippocampus of EAE mice and synaptic plasticity alterations. We observed that T lymphocytes from EAE, but not from control mice, release IL-1β and promote LTP appearance over LTD, thereby mimicking the facilitated LTP induction observed in the cortex of MS patients. EAE-specific T lymphocytes were able to suppress GABAergic transmission in an IL-1β-dependent manner, providing a possible synaptic mechanism able to lower the threshold of LTP induction in MS brains. Moreover, in vivo blockade of IL-1β signaling resulted in inflammation and synaptopathy recovery in EAE hippocampus. These data provide novel insights into the pathophysiology of MS.


The Journal of Neuroscience | 2013

Synaptic Plasticity and PDGF Signaling Defects Underlie Clinical Progression in Multiple Sclerosis

Francesco Mori; Silvia Rossi; Sonia Piccinin; Caterina Motta; Dalila Mango; Hajime Kusayanagi; Alessandra Bergami; Valeria Studer; Carolina G. Nicoletti; Fabio Buttari; Francesca Barbieri; Nicola B. Mercuri; Gianvito Martino; Roberto Furlan; Robert Nisticò; Diego Centonze

Neuroplasticity is essential to prevent clinical worsening despite continuing neuronal loss in several brain diseases, including multiple sclerosis (MS). The precise nature of the adaptation mechanisms taking place in MS brains, ensuring protection from disability appearance and accumulation, is however unknown. Here, we explored the hypothesis that long-term synaptic potentiation (LTP), potentially able to minimize the effects of neuronal loss by providing extra excitation of denervated neurons, is the most relevant form of adaptive plasticity in stable MS patients, and it is disrupted in progressing MS patients. We found that LTP, explored by means of transcranial magnetic theta burst stimulation over the primary motor cortex, was still possible, and even favored, in stable relapsing-remitting (RR-MS) patients, whereas it was absent in individuals with primary progressive MS (PP-MS). We also provided evidence that platelet-derived growth factor (PDGF) plays a substantial role in favoring both LTP and brain reserve in MS patients, as this molecule: (1) was reduced in the CSF of PP-MS patients, (2) enhanced LTP emergence in hippocampal mouse brain slices, (3) was associated with more pronounced LTP in RR-MS patients, and (4) was associated with the clinical compensation of new brain lesion formation in RR-MS. Our results show that brain plasticity reserve, in the form of LTP, is crucial to contrast clinical deterioration in MS. Enhancing PDGF signaling might represent a valuable treatment option to maintain brain reserve and to attenuate the clinical consequences of neuronal damage in the progressive phases of MS and in other neurodegenerative disorders.


Neurological Sciences | 2009

Lack of effect of cannabis-based treatment on clinical and laboratory measures in multiple sclerosis

Diego Centonze; Francesco Mori; Giacomo Koch; Fabio Buttari; Claudia Codecà; Silvia Rossi; Maria Teresa Cencioni; Monica Bari; Stefania Fiore; Giorgio Bernardi; Luca Battistini; Mauro Maccarrone

The endocannabinoid system (ECS) is involved in the pathophysiology of multiple sclerosis (MS), and relief from pain and spasticity has been reported in MS patients self-medicating with marijuana. A cannabis-based medication containing Δ9-tetrahydrocannabinol and cannabidiol (Sativex®) has been approved in some countries for the treatment of MS-associated pain. The effects of this pharmaceutical preparation on other clinically relevant aspects of MS pathophysiology, however, are still unclear. In 20 MS patients, we measured the effects of Sativex® on clinically measured spasticity and on neurophysiological and laboratory parameters that correlate with spasticity severity or with the modulation of the ECS. Sativex® failed to affect spasticity and stretch reflex excitability. This compound also failed to affect the synthesis and the degradation of the endocannabinoid anandamide, as well as the expression of both CB1 and CB2 cannabinoid receptors in various subpopulations of peripheral lymphocytes.


Molecular Neurodegeneration | 2014

Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53

Silvia Rossi; Caterina Motta; Valeria Studer; Giulia Macchiarulo; Elisabetta Volpe; Francesca Barbieri; Gabriella Ruocco; Fabio Buttari; Annamaria Finardi; Raffaele Mancino; Sagit Weiss; Luca Battistini; Gianvito Martino; Roberto Furlan; Jelena Drulovic; Diego Centonze

BackgroundUnderstanding how inflammation causes neuronal damage is of paramount importance in multiple sclerosis (MS) and in other neurodegenerative diseases. Here we addressed the role of the apoptotic cascade in the synaptic abnormalities and neuronal loss caused by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α) in brain tissues, and disease progression caused by inflammation in relapsing-remitting MS (RRMS) patients.ResultsThe effect of IL-1β, but not of TNF-α, on glutamate-mediated excitatory postsynaptic currents was blocked by pifithrin-α (PFT), inhibitor of p53. The protein kinase C (PKC)/transient receptor potential vanilloid 1 (TRPV1) pathway was involved in IL-1β-p53 interaction at glutamatergic synapses, as pharmacological modulation of this inflammation-relevant molecular pathway affected PFT effects on the synaptic action of IL-1β. IL-1β-induced neuronal swelling was also blocked by PFT, and IL-1β increased the expression of p21, a canonical downstream target of activated p53.Consistent with these in vitro results, the Pro/Pro genotype of p53, associated with low efficiency of transcription of p53-regulated genes, abrogated the association between IL-1β cerebrospinal fluid (CSF) levels and disability progression in RRMS patients. The interaction between p53 and CSF IL-1β was also evaluated at the optical coherence tomography (OCT), showing that IL-1β-driven neurodegenerative damage, causing alterations of macular volume and of retinal nerve fibre layer thickness, was modulated by the p53 genotype.ConclusionsInflammatory synaptopathy and neurodegeneration caused by IL-1β in RRMS patients involve the apoptotic cascade. Targeting IL-1β-p53 interaction might result in significant neuroprotection in MS.


Journal of Neuroimmunology | 2013

Determination of kFLC and K Index in cerebrospinal fluid: A valid alternative to assessintrathecal immunoglobulin synthesis

Fabio Duranti; Massimo Pieri; Diego Centonze; Fabio Buttari; Sergio Bernardini; Mariarita Dessì

Intrathecal immunoglobulin synthesis is observed in several disorders of the central nervous system, but its detection by current laboratory tests is relatively insensitive and operator depending. We assessed the diagnostic accuracy of a nephelometric assay for k free light chain determination in cerebrospinal fluid and serum. The patients were grouped according to clinical and laboratory criteria. ROC curves for all methods were performed to find the best cut-off value. kFLC Index seems to be more accurate than other parameters. Our data indicate that nephelometric assay for kFLCs in CSF reliably detect intrathecal immunoglobulin synthesis and discriminate multiple sclerosis patients.

Collaboration


Dive into the Fabio Buttari's collaboration.

Top Co-Authors

Avatar

Diego Centonze

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesco Mori

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Silvia Rossi

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Caterina Motta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valeria Studer

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Hajime Kusayanagi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Carolina G. Nicoletti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Fabrizia Monteleone

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Roberto Furlan

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge