Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Candotti is active.

Publication


Featured researches published by Fabio Candotti.


Transplantation | 2004

Engraftment potential of human amnion and chorion cells derived from term placenta.

Marco Bailo; Maddalena Soncini; Elsa Vertua; Patrizia Bonassi Signoroni; Silvia Sanzone; Guerino Lombardi; Davide Arienti; Francesca Calamani; Daniela Zatti; Petra Paul; Alberto Albertini; Fausto Zorzi; Angelo Cavagnini; Fabio Candotti; Georg S. Wengler; Ornella Parolini

Background. Fetal membranes are tissues of particular interest for several reasons, including their role in preventing rejection of the fetus and their early embryologic origin. which may entail progenitor potential. The immunologic reactivity and the transplantation potential of amnion and chorion cells, however, remain to be elucidated. Methods. Amnion and chorion cells were isolated from human term placenta and characterized by immunohistochemistry, flow cytometric analysis, and expression profile of relevant genes. The immunomodulatory characteristics of these cells were studied in allogeneic and xenogeneic mixed lymphocyte reactions and their engraftment potential analyzed by transplantation into neonatal swine and rats. Posttransplant chimerism was determined by polymerase chain reaction analysis with probes specific for human DNA. Results. Phenotypic and gene expression studies indicated mesenchymal stem cell-like profiles in both amnion and chorion cells that were positive for neuronal, pulmonary, adhesion, and migration markers. In addition, cells isolated both from amnion and chorion did not induce allogeneic nor xenogeneic lymphocyte proliferation responses and were able to actively suppress lymphocyte responsiveness. Transplantation in neonatal swine and rats resulted in human microchimerism in various organs and tissues. Conclusions. Human amnion and chorion cells from term placenta can successfully engraft neonatal swine and rats. These results may be explained by the peculiar immunologic characteristics and mesenchymal stem cell-like phenotype of these cells. These findings suggest that amnion and chorion cells may represent an advantageous source of progenitor cells with potential applications in a variety of cell therapy and transplantation procedures.


The New England Journal of Medicine | 2014

Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing

Michael R. Wilson; Samia N. Naccache; Erik Samayoa; Mark Biagtan; Hiba Bashir; Guixia Yu; Shahriar M. Salamat; Sneha Somasekar; Scot Federman; Steve Miller; Robert A. Sokolic; Elizabeth Garabedian; Fabio Candotti; Rebecca H. Buckley; Kurt D. Reed; Teresa L. Meyer; Christine M. Seroogy; Renee Galloway; Sheryl L. Henderson; James E. Gern; Joseph L. DeRisi; Charles Y. Chiu

A 14-year-old boy with severe combined immunodeficiency presented three times to a medical facility over a period of 4 months with fever and headache that progressed to hydrocephalus and status epilepticus necessitating a medically induced coma. Diagnostic workup including brain biopsy was unrevealing. Unbiased next-generation sequencing of the cerebrospinal fluid identified 475 of 3,063,784 sequence reads (0.016%) corresponding to leptospira infection. Clinical assays for leptospirosis were negative. Targeted antimicrobial agents were administered, and the patient was discharged home 32 days later with a status close to his premorbid condition. Polymerase-chain-reaction (PCR) and serologic testing at the Centers for Disease Control and Prevention (CDC) subsequently confirmed evidence of Leptospira santarosai infection.


The New England Journal of Medicine | 2014

Early-onset stroke and vasculopathy associated with mutations in ADA2

Qing Zhou; Dan Yang; Amanda K. Ombrello; Andrey Zavialov; Camilo Toro; Anton V. Zavialov; Deborah L. Stone; Jae Jin Chae; Sergio D. Rosenzweig; Kevin Bishop; Karyl S. Barron; Hye Sun Kuehn; Patrycja Hoffmann; Alejandra Negro; Wanxia L. Tsai; Edward W. Cowen; Wuhong Pei; Joshua D. Milner; Christopher Silvin; Theo Heller; David T. Chin; Nicholas J. Patronas; John S. Barber; Chyi-Chia R. Lee; Geryl Wood; Alexander Ling; Susan J. Kelly; David E. Kleiner; James C. Mullikin; Nancy J. Ganson

BACKGROUND We observed a syndrome of intermittent fevers, early-onset lacunar strokes and other neurovascular manifestations, livedoid rash, hepatosplenomegaly, and systemic vasculopathy in three unrelated patients. We suspected a genetic cause because the disorder presented in early childhood. METHODS We performed whole-exome sequencing in the initial three patients and their unaffected parents and candidate-gene sequencing in three patients with a similar phenotype, as well as two young siblings with polyarteritis nodosa and one patient with small-vessel vasculitis. Enzyme assays, immunoblotting, immunohistochemical testing, flow cytometry, and cytokine profiling were performed on samples from the patients. To study protein function, we used morpholino-mediated knockdowns in zebrafish and short hairpin RNA knockdowns in U937 cells cultured with human dermal endothelial cells. RESULTS All nine patients carried recessively inherited mutations in CECR1 (cat eye syndrome chromosome region, candidate 1), encoding adenosine deaminase 2 (ADA2), that were predicted to be deleterious; these mutations were rare or absent in healthy controls. Six patients were compound heterozygous for eight CECR1 mutations, whereas the three patients with polyarteritis nodosa or small-vessel vasculitis were homozygous for the p.Gly47Arg mutation. Patients had a marked reduction in the levels of ADA2 and ADA2-specific enzyme activity in the blood. Skin, liver, and brain biopsies revealed vasculopathic changes characterized by compromised endothelial integrity, endothelial cellular activation, and inflammation. Knockdown of a zebrafish ADA2 homologue caused intracranial hemorrhages and neutropenia - phenotypes that were prevented by coinjection with nonmutated (but not with mutated) human CECR1. Monocytes from patients induced damage in cocultured endothelial-cell layers. CONCLUSIONS Loss-of-function mutations in CECR1 were associated with a spectrum of vascular and inflammatory phenotypes, ranging from early-onset recurrent stroke to systemic vasculopathy or vasculitis. (Funded by the National Institutes of Health Intramural Research Programs and others.).


Blood | 2009

How I treat ADA deficiency

H. Bobby Gaspar; Alessandro Aiuti; Fulvio Porta; Fabio Candotti; Michael S. Hershfield; Luigi D. Notarangelo

Adenosine deaminase deficiency is a disorder of purine metabolism leading to severe combined immunodeficiency (ADA-SCID). Without treatment, the condition is fatal and requires early intervention. Haematopoietic stem cell transplantation is the major treatment for ADA-SCID, although survival following different donor sources varies considerably. Unlike other SCID forms, 2 other options are available for ADA-SCID: enzyme replacement therapy (ERT) with pegylated bovine ADA, and autologous haematopoietic stem cell gene therapy (GT). Due to the rarity of the condition, the lack of large scale outcome studies, and availability of different treatments, guidance on treatment strategies is limited. We have reviewed the currently available evidence and together with our experience of managing this condition propose a consensus management strategy. Matched sibling donor transplants represent a successful treatment option with high survival rates and excellent immune recovery. Mismatched parental donor transplants have a poor survival outcome and should be avoided unless other treatments are unavailable. ERT and GT both show excellent survival, and therefore the choice between ERT, MUD transplant, or GT is difficult and dependent on several factors, including accessibility to the different modalities, response of patients to long-term ERT, and the attitudes of physicians and parents to the short- and potential long-term risks associated with different treatments.


Molecular Therapy | 2003

American Society of Gene Therapy (ASGT) Ad Hoc Subcommittee on Retroviral-Mediated Gene Transfer to Hematopoietic Stem Cells

Donald B. Kohn; Michel Sadelain; Cynthia E. Dunbar; David M. Bodine; Hans Peter Kiem; Fabio Candotti; John F. Tisdale; Isabelle Riviere; C. Anthony Blau; Robert E. Richard; Brian P. Sorrentino; Jan A. Nolta; Harry L. Malech; Malcolm K. Brenner; Kenneth Cornetta; Joy Cavagnaro; Katherine A. High; Joseph C. Glorioso

Gene transfer using retroviral vectors has been under clinical study for more than 12 years1. Many studies have targeted hematopoietic stem cells (HSCs) as a potentially enduring and renewable source of gene-modified blood cells for the treatment of specific genetic diseases, cancer, leukemia, and HIV-1 infection2. Although initial studies were hampered by very low levels of gene transfer to HSCs, incremental progress has been realized in the efficiency of gene transfer to HSCs. These advances have culminated in the report of clinically significant restoration of immunity in patients with the X-linked form of severe combined immune deficiency (XSCID) by Alain Fischer, Marina Cavazzana-Calvo, and colleagues at the Hopital Necker Enfants Malades in Paris3. Their study and those conducted by Adrian Thrasher and colleagues at the Great Ormond Street Childrens Hospital in London for XSCID and by Claudio Bordignon and colleagues at the Hospital San Raffaele in Milan for children with SCID due to deficiency of adenosine deaminase (ADA) provide incontrovertible proof that gene therapy can ameliorate genetic diseases4,5.


Nature Genetics | 2009

Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness

Chantal Lagresle-Peyrou; Emmanuelle Six; Capucine Picard; Frédéric Rieux-Laucat; Vincent Michel; Andrea Ditadi; Corinne Demerens-de Chappedelaine; Estelle Morillon; Françoise Valensi; Karen L. Simon-Stoos; James C. Mullikin; Lenora M. Noroski; Céline Besse; N Wulffraat; Alina Ferster; Manuel M Abecasis; Fabien Calvo; Christine Petit; Fabio Candotti; Laurent Abel; Alain Fischer; Marina Cavazzana-Calvo

Reticular dysgenesis is an autosomal recessive form of human severe combined immunodeficiency characterized by an early differentiation arrest in the myeloid lineage and impaired lymphoid maturation. In addition, affected newborns have bilateral sensorineural deafness. Here we identify biallelic mutations in AK2 (adenylate kinase 2) in seven individuals affected with reticular dysgenesis. These mutations result in absent or strongly decreased protein expression. We then demonstrate that restoration of AK2 expression in the bone marrow cells of individuals with reticular dysgenesis overcomes the neutrophil differentiation arrest, underlining its specific requirement in the development of a restricted set of hematopoietic lineages. Last, we establish that AK2 is specifically expressed in the stria vascularis region of the inner ear, which provides an explanation of the sensorineural deafness in these individuals. These results identify a previously unknown mechanism involved in regulation of hematopoietic cell differentiation and in one of the most severe human immunodeficiency syndromes.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism

Taizo Wada; Shepherd H. Schurman; Makoto Otsu; Elizabeth Garabedian; Hans D. Ochs; David L. Nelson; Fabio Candotti

Somatic mosaicism caused by in vivo reversion of inherited mutations has been described in several human genetic disorders. Back mutations resulting in restoration of wild-type sequences and second-site mutations leading to compensatory changes have been shown in mosaic individuals. In most cases, however, the precise genetic mechanisms underlying the reversion events have remained unclear, except for the few instances where crossing over or gene conversion have been demonstrated. Here, we report a patient affected with Wiskott–Aldrich syndrome (WAS) caused by a 6-bp insertion (ACGAGG) in the WAS protein gene, which abrogates protein expression. Somatic mosaicism was documented in this patient whose majority of T lymphocytes expressed nearly normal levels of WAS protein. These lymphocytes were found to lack the deleterious mutation and showed a selective growth advantage in vivo. Analysis of the sequence surrounding the mutation site showed that the 6-bp insertion followed a tandem repeat of the same six nucleotides. These findings strongly suggest that DNA polymerase slippage was the cause of the original germ-line insertion mutation in this family and that the same mechanism was responsible for its deletion in one of the propositus T cell progenitors, thus leading to reversion mosaicism.


Human Gene Therapy | 2002

Immune Response to Fetal Calf Serum by Two Adenosine Deaminase-Deficient Patients After T Cell Gene Therapy

Laura Tuschong; Sherry Lau Soenen; R. Michael Blaese; Fabio Candotti; Linda M. Muul

The first approved clinical gene therapy trial for adenosine deaminase (ADA) deficiency employed autologous T cells grown in fetal calf serum (FCS)-supplemented medium and transduced with a retroviral vector (LASN) also produced in the presence of FCS. Ten years after their enrollment, both patients have circulating T cells containing vector DNA. However, whereas approximately 20% of the circulating T cells from patient 1 are still vector positive, less than 1% of patient 2s T cells have detectable vector. This difference appears to be not only a function of the original transduction efficiency and cell expansion capability in vitro, but also of the immune response that patient 2 developed to FCS components during the course of her treatment. In this study, serum samples from each patient were tested for antibodies to FCS by enzyme-linked immunosorbent assay and anti-FCS responses were demonstrated in both patients. Analysis of immunoglobulin classes revealed comparable levels of IgA and IgM anti-FCS titers. Patient 2, however, had significantly higher IgG responses to FCS than did patient 1. Investigation of the development of anti-FCS responses by IgG subclasses indicated that there was a different pattern in the development of IgG immunity to FCS between the two patients. In addition, significant antibody response to bovine lipoprotein was detected in patient 2, but not in patient 1 or in control samples. These findings suggest that the unique immune response mounted by patient 2 may have influenced the outcome of the gene transfer treatments in this patient.


Nature | 2006

Gene therapy - X-SCID transgene leukaemogenicity

Adrian J. Thrasher; H. B. Gaspar; Christopher Baum; Ute Modlich; Axel Schambach; Fabio Candotti; Makoto Otsu; B. Sorrentino; Linda Scobie; Ewan R. Cameron; Karen Blyth; James C. Neil; S.H.-B. Abina; Marina Cavazzana-Calvo; Alain Fischer

Arising from: Woods, N.-B., Bottero, V., Schmidt, M., von Kalle, C. & Verma, I. M. 440, 1123 (2006); see also communication from Pike-Overzet et al.; Woods et al. replyGene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the γ-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.


Molecular Cell | 2001

Unexpected Effects of FERM Domain Mutations on Catalytic Activity of Jak3: Structural Implication for Janus Kinases

Yong-Jie Zhou; Min Chen; Nancy Cusack; Lida H. Kimmel; Kelly S. Magnuson; James G. Boyd; Wen Lin; Joseph L. Roberts; Andrea Lengi; Rebecca H. Buckley; Robert L. Geahlen; Fabio Candotti; Massimo Gadina; Paul S. Changelian; John J. O'Shea

Janus kinases comprise carboxyterminal kinase, pseudokinase, SH2-like, and N-terminal FERM domains. We identified three patient-derived mutations in the FERM domain of Jak3 and investigated the functional consequences of these mutations. These mutations inhibited receptor binding and also abrogated kinase activity, suggesting interactions between the FERM and kinase domains. In fact, the domains were found to physically associate, and coexpression of the FERM domain enhanced activity of the isolated kinase domain. Conversely, staurosporine, which alters kinase domain structure, disrupted receptor binding, even though the catalytic activity of Jak3 is dispensable for receptor binding. Thus, the Jak FERM domain appears to have two critical functions: receptor interaction and maintenance of kinase integrity.

Collaboration


Dive into the Fabio Candotti's collaboration.

Top Co-Authors

Avatar

Elizabeth Garabedian

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert A. Sokolic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda M. Muul

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. O'Shea

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Donald B. Kohn

University of California

View shared research outputs
Top Co-Authors

Avatar

R. Michael Blaese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge