Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fábio G. Teixeira is active.

Publication


Featured researches published by Fábio G. Teixeira.


Cellular and Molecular Life Sciences | 2013

Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration?

Fábio G. Teixeira; Miguel Carvalho; Nuno Sousa; António J. Salgado

The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have been proposed as a possible therapeutic tool for CNS disorders. In addition to their differentiation potential, it is well accepted nowadays that their beneficial actions can also be mediated by their secretome. Indeed, it was already demonstrated, both in vitro and in vivo, that MSCs are able to secrete a broad range of neuroregulatory factors that promote an increase in neurogenesis, inhibition of apoptosis and glial scar formation, immunomodulation, angiogenesis, neuronal and glial cell survival, as well as relevant neuroprotective actions on different pathophysiological contexts. Considering their protective action in lesioned sites, MSCs’ secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Thus, in this review we analyze the current understanding of MSCs secretome as a new paradigm for the treatment of CNS neurodegenerative diseases.


Frontiers in Cellular Neuroscience | 2015

Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities

António J. Salgado; João Sousa; Bruno M. Costa; Ana O. Pires; A. Mateus-Pinheiro; Fábio G. Teixeira; Luísa Pinto; Nuno Sousa

Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.


Frontiers in Pharmacology | 2016

MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential

Ana Marote; Fábio G. Teixeira; Bárbara Mendes-Pinheiro; António J. Salgado

Exosomes are membrane-enclosed nanovesicles (30–150 nm) that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs) conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects.


International Review of Neurobiology | 2013

Tissue Engineering and Regenerative Medicine: Past, Present, and Future

António J. Salgado; Joaquim M. Oliveira; Albino Martins; Fábio G. Teixeira; Nuno A. Silva; Nuno M. Neves; Nuno Sousa; Rui L. Reis

Tissue and organ repair still represents a clinical challenge. Tissue engineering and regenerative medicine (TERM) is an emerging field focused on the development of alternative therapies for tissue/organ repair. This highly multidisciplinary field, in which bioengineering and medicine merge, is based on integrative approaches using scaffolds, cell populations from different sources, growth factors, nanomedicine, gene therapy, and other techniques to overcome the limitations that currently exist in the clinics. Indeed, its overall objective is to induce the formation of new functional tissues, rather than just implanting spare parts. This chapter aims at introducing the reader to the concepts and techniques of TERM. It begins by explaining how TERM have evolved and merged into TERM, followed by a short overview of some of its key aspects such as the combinations of scaffolds with cells and nanomedicine, scaffold processing, and new paradigms of the use of stem cells for tissue repair/regeneration, which ultimately could represent the future of new therapeutic approaches specifically aimed at clinical applications.


Stem Cells Translational Medicine | 2017

Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson’s Disease

Fábio G. Teixeira; Miguel Carvalho; Krishna M. Panchalingam; Ana João Rodrigues; Bárbara Mendes-Pinheiro; Sandra I. Anjo; Bruno Manadas; Leo A. Behie; Nuno Sousa; António J. Salgado

Research in the last decade strongly suggests that mesenchymal stem cell (MSC)‐mediated therapeutic benefits are mainly due to their secretome, which has been proposed as a possible therapeutic tool for the treatment of Parkinsons disease (PD). Indeed, it has been shown that the MSC secretome increases neurogenesis and cell survival, and has numerous neuroprotective actions under different conditions. Additionally, using dynamic culturing conditions (through computer‐controlled bioreactors) can further modulate the MSC secretome, thereby generating a more potent neurotrophic factor cocktail (i.e., conditioned medium). In this study, we have characterized the MSC secretome by proteomic‐based analysis, investigating its therapeutic effects on the physiological recovery of a 6‐hydroxidopamine (6‐OHDA) PD rat model. For this purpose, we injected MSC secretome into the substantia nigra (SNc) and striatum (STR), characterizing the behavioral performance and determining histological parameters for injected animals versus untreated groups. We observed that the secretome potentiated the increase of dopaminergic neurons (i.e., tyrosine hydroxylase‐positive cells) and neuronal terminals in the SNc and STR, respectively, thereby supporting the recovery observed in the Parkinsonian rats’ motor performance outcomes (assessed by rotarod and staircase tests). Finally, proteomic characterization of the MSC secretome (through combined mass spectrometry analysis and Bioplex assays) revealed the presence of important neuroregulatory molecules, namely cystatin C, glia‐derived nexin, galectin‐1, pigment epithelium‐derived factor, vascular endothelial growth factor, brain‐derived neurotrophic factor, interleukin‐6, and glial cell line‐derived neurotrophic factor. Overall, we concluded that the use of human MSC secretome alone was able to partially revert the motor phenotype and the neuronal structure of 6‐OHDA PD animals. This indicates that the human MSC secretome could represent a novel therapeutic for the treatment of PD. Stem Cells Translational Medicine 2017;6:634–646


Scientific Reports | 2016

Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation

Fábio G. Teixeira; Krishna M. Panchalingam; Rita C. Assunção-Silva; Sofia Cristina Serra; Bárbara Mendes-Pinheiro; P. Patricio; Sunghoon Jung; Sandra I. Anjo; Bruno Manadas; Luísa Pinto; Nuno Sousa; Leo A. Behie; António J. Salgado

In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.


Stem Cell Research & Therapy | 2015

Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome?

Fábio G. Teixeira; Krishna M. Panchalingam; Sandra I. Anjo; Bruno Manadas; Ricardo N. Pereira; Nuno Sousa; António J. Salgado; Leo A. Behie

IntroductionThe use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear.MethodsIn the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells.ResultsThe present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome.ConclusionsOur results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.


American Journal of Sports Medicine | 2017

Mesenchymal Stem Cell Secretome: A Potential Tool for the Prevention of Muscle Degenerative Changes Associated With Chronic Rotator Cuff Tears:

Nuno Sevivas; Fábio G. Teixeira; Raquel Portugal; Luís Araújo; Luís Filipe Carriço; Nuno Ferreira; Manuel Vieira da Silva; João Espregueira-Mendes; Sandra I. Anjo; Bruno Manadas; Nuno Sousa; António J. Salgado; Sofia Cristina Serra

Background: Massive rotator cuff tears (MRCTs) are usually chronic lesions with pronounced degenerative changes, where advanced fatty degeneration and atrophy can make the tear irreparable. Human mesenchymal stem cells (hMSCs) secrete a range of growth factors and vesicular systems, known as secretome, that mediates regenerative processes in tissues undergoing degeneration. Purpose: To study the effect of hMSC secretome on muscular degenerative changes and shoulder function on a rat MRCT model. Study Design: Controlled laboratory study. Methods: A bilateral 2-tendon (supraspinatus and infraspinatus) section was performed to create an MRCT in a rat model. Forty-four Wistar-Han rats were randomly assigned to 6 groups: control group (sham surgery), lesion control group (MRCT), and 4 treated-lesion groups according to the site and periodicity of hMSC secretome injection: single local injection, multiple local injections, single systemic injection, and multiple systemic injections. Forelimb function was analyzed with the staircase test. Atrophy and fatty degeneration of the muscle were evaluated at 8 and 16 weeks after injury. A proteomic analysis was conducted to identify the molecules present in the hMSC secretome that can be associated with muscular degeneration prevention. Results: When untreated for 8 weeks, the MRCT rats exhibited a significantly higher fat content (0.73% ± 0.19%) compared with rats treated with a single local injection (0.21% ± 0.04%; P < .01) or multiple systemic injections (0.25% ± 0.10%; P < .05) of hMSC secretome. At 16 weeks after injury, a protective effect of the secretome in the multiple systemic injections (0.62% ± 0.14%; P < .001), single local injection (0.76% ± 0.17%; P < .001), and multiple local injections (1.35% ± 0.21%; P < .05) was observed when compared with the untreated MRCT group (2.51% ± 0.42%). Regarding muscle atrophy, 8 weeks after injury, only the single local injection group (0.0993% ± 0.0036%) presented a significantly higher muscle mass than that of the untreated MRCT group (0.0794% ± 0.0047%; P < .05). Finally, the proteomic analysis revealed the presence of important proteins with muscle regeneration, namely, pigment epithelium-derived factor and follistatin. Conclusion: The study data suggest that hMSC secretome effectively decreases the fatty degeneration and atrophy of the rotator cuff muscles. Clinical Relevance: We describe a new approach for decreasing the characteristic muscle degeneration associated with chronic rotator cuff tears. This strategy is particularly important for patients whose tendon healing after later surgical repair could be compromised by the progressing degenerative changes. In addition, both precise intramuscular local injection and multiple systemic secretome injections have been shown to be promising delivery forms for preventing muscle degeneration.


Scientific Reports | 2017

Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF

Luís Martins; Rui O. Costa; Joana R. Pedro; Paulo Aguiar; Sofia C. Serra; Fábio G. Teixeira; Nuno Sousa; António J. Salgado; Ramiro D. Almeida

Mesenchymal stem cells (MSCs) have been used for cell-based therapies in regenerative medicine, with increasing importance in central and peripheral nervous system repair. However, MSCs grafting present disadvantages, such as, a high number of cells required for transplantation and low survival rate when transplanted into the central nervous system (CNS). In line with this, MSCs secretome which present on its composition a wide range of molecules (neurotrophins, cytokines) and microvesicles, can be a solution to surpass these problems. However, the effect of MSCs secretome in axonal elongation is poorly understood. In this study, we demonstrate that application of MSCs secretome to both rat cortical and hippocampal neurons induces an increase in axonal length. In addition, we show that this growth effect is axonal intrinsic with no contribution from the cell body. To further understand which are the molecules required for secretome-induced axonal outgrowth effect, we depleted brain-derived neurotrophic factor (BDNF) from the secretome. Our results show that in the absence of BDNF, secretome-induced axonal elongation effect is lost and that axons present a reduced axonal growth rate. Altogether, our results demonstrate that MSCs secretome is able to promote axonal outgrowth in CNS neurons and this effect is mediated by BDNF.


American Journal of Sports Medicine | 2018

Mesenchymal Stem Cell Secretome Improves Tendon Cell Viability In Vitro and Tendon-Bone Healing In Vivo When a Tissue Engineering Strategy Is Used in a Rat Model of Chronic Massive Rotator Cuff Tear

Nuno Sousa; Fábio G. Teixeira; Raquel Portugal; Bruno Direito-Santos; João Espregueira-Mendes; F.J. Oliveira; R.F. Silva; Wan Ting Sow; Nguyen Cong Luong; Kee Woei Ng; António J. Salgado

Background: Massive rotator cuff tears (MRCTs) represent a major clinical concern, especially when degeneration and chronicity are involved, which highly compromise healing capacity. Purpose: To study the effect of the secretome of mesenchymal stem cells (MSCs) on tendon cells (TCs) followed by the combination of these activated TCs with an electrospun keratin-based scaffold to develop a tissue engineering strategy to improve tendon-bone interface (TBi) healing in a chronic MRCT rat model. Study Design: Controlled laboratory study. Methods: Human TCs (hTCs) cultured with the human MSCs (hMSCs) secretome (as conditioned media [CM]) were combined with keratin electrospun scaffolds and further implanted in a chronic MRCT rat model. Wistar-Han rats (N = 15) were randomly assigned to 1 of 3 groups: untreated lesion (MRCT group, n = 5), lesion treated with a scaffold only (scaffold-only group, n = 5), and lesion treated with a scaffold seeded with hTCs preconditioned with hMSCs-CM (STC_hMSC_CM group, n = 5). After sacrifice, 16 weeks after surgery, the rotator cuff TBi was harvested for histological analysis and biomechanical testing. Results: The hMSCs secretome increased hTCs viability and density in vitro. In vivo, a significant improvement of the tendon maturing score was observed in the STC_hMSC_CM group (mean ± standard error of the mean, 15.6 ± 1.08) compared with the MRCT group (11.0 ± 1.38; P < .05). Biomechanical tests revealed a significant increase in the total elongation to rupture (STC_hMSC_CM, 11.99 ± 3.30 mm; scaffold-only, 9.89 ± 3.47 mm; MRCT, 5.86 ± 3.16 mm; P < .05) as well as a lower stiffness (STC_hMSC_CM, 6.25 ± 1.74 N/mm; scaffold-only, 6.72 ± 1.28 N/mm; MRCT, 11.54 ± 2.99 N/mm; P < .01). Conclusion: The results demonstrated that hMSCs-CM increased hTCs viability and density in vitro. Clear benefits also were observed when these primed cells were integrated into a tissue engineering strategy with an electrospun keratin scaffold, as evidenced by improved histological and biomechanical properties for the STC_hMSC_CM group compared with the MRCT group. Clinical Relevance: This work supports further investigation into the use of MSC secretome for priming TCs toward a more differentiated phenotype, and it promotes the tissue engineering strategy as a promising modality to help improve treatment outcomes for chronic MRCTs.

Collaboration


Dive into the Fábio G. Teixeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge